Detailed Information

Cited 2 time in webofscience Cited 1 time in scopus
Metadata Downloads

Grain size prediction in SCR420HB hot forging: Combining phenomenological and JMAK models with experimental and numerical analysis

Authors
Razali, Mohd KaswandeeHeo, YunIrani, MissamChung, Suk HwanJoun, Man Soo
Issue Date
Dec-2024
Publisher
Elsevier BV
Keywords
Bearing steel; Dynamic recrystallization; FEM-coupled optimization; Flow function; Microstructural characterization
Citation
Materials Today Communications, v.41
Indexed
SCIE
SCOPUS
Journal Title
Materials Today Communications
Volume
41
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/74838
DOI
10.1016/j.mtcomm.2024.110921
ISSN
2352-4928
2352-4928
Abstract
This study presents the enhancement of a phenomenological model for predicting grain size evolution during the hot deformation of SCR420HB bearing steel. The model now incorporates strain rate and temperature as controllable variables, thereby improving prediction accuracy for various combinations of these factors. Material's microstructural constants, including initial grain size exponent, strain exponent, strain rate exponent, and dynamic recrystallization activation energy, were determined through FEM-coupled optimization techniques. Accurate flow stress data, crucial for determining the onset of dynamic recrystallization, was integrated to enhance the model's precision. The accuracy of the optimized model was validated by comparing predicted and experimental grain sizes across different stages of the hot forging process, demonstrating improved model performance. Additionally, the study provides insights into the sensitivity of the grain size to different deformation conditions, offering valuable guidance for industrial forging applications. This comprehensive approach ensures the model's robustness and practical applicability in real-world scenarios. © 2024 Elsevier Ltd
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Joun, Man Soo photo

Joun, Man Soo
대학원 (기계항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE