Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Red Pine Bark Extract Alleviates Akt/GSK-3β Signaling Disruption in the Hippocampus of Streptozotocin-Induced Diabetic Sprague-Dawley RatsRed Pine Bark Extract Alleviates Akt/GSK-3β Signaling Disruption in the Hippocampus of Streptozotocin-Induced Diabetic Sprague-Dawley Rats

Other Titles
Red Pine Bark Extract Alleviates Akt/GSK-3β Signaling Disruption in the Hippocampus of Streptozotocin-Induced Diabetic Sprague-Dawley Rats
Authors
Kim Kwan JoongAkhmedova ZukhraHeo Ho JinKim Dae-Ok
Issue Date
Jun-2024
Publisher
한국미생물·생명공학회
Keywords
Apoptosis; diabetes mellitus; Pinus densiflora; tau protein
Citation
Journal of Microbiology and Biotechnology, v.34, no.6, pp 1307 - 1313
Pages
7
Indexed
SCIE
SCOPUS
KCI
Journal Title
Journal of Microbiology and Biotechnology
Volume
34
Number
6
Start Page
1307
End Page
1313
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/70919
DOI
10.4014/jmb.2403.03038
ISSN
1017-7825
1738-8872
Abstract
This study investigates whether red pine (Pinus densiflora Sieb. et Zucc.) bark extract (PBE) can alleviate diabetes and abnormal apoptosis signaling pathways in the hippocampus of streptozotocin (STZ)-induced diabetic Sprague-Dawley (SD) rats. Two dosages of PBE (15 and 30 mg/kg of body weight/day) were administered orally to STZ-induced diabetic SD rats for 20 days. Blood glucose level and body weight were measured once per week. After 20 days of oral administration of PBE, the rat hippocampus was collected, and the production of Akt, p-Akt, GSK-3β, p-GSK-3β, tau, p-tau, Bax, and Bcl-2 proteins were determined by western blot analysis. A decrease in blood glucose level and recovery of body weight were observed in PBE-treated diabetic rats. In the Akt/GSK-3β/tau signaling pathway, PBE inhibited diabetes-induced Akt inactivation, GSK-3β inactivation, and tau hyperphosphorylation. The protein production ratio of Bax/Bcl-2 was restored to the control group level. These results suggest that PBE, rich in phenolic compounds, can be used as a functional food ingredient to ameliorate neuronal apoptosis in diabetes mellitus.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Heo, Ho Jin photo

Heo, Ho Jin
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE