Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Engineering anisotropic magnetoresistance of Hall bars with interfacial organic layers

Authors
Park, Jun HongRibeiro, MarioPham, Thi Kim HangLee, Nyun JongEom, Tai-woonJo, JunhyeonPark, Seung-YoungRhim, Sonny H.Nakamura, KohjiYoo, Jung-WooKim, Tae Hee
Issue Date
Jul-2020
Publisher
A V S AMER INST PHYSICS
Citation
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, v.38, no.4
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
Volume
38
Number
4
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/6464
DOI
10.1116/6.0000222
ISSN
1071-1023
Abstract
Tuning the magnetoresistance behavior of heterostructures composed of nonmagnetic and ferromagnetic (FM) materials is crucial for improving their applicability in electronic and spintronic devices. In this study, we investigate whether the integration of organic layers to NiFe/Pt junctions can result in the modification of the magnetic moment of the FM layer using iron phthalocyanines (FePc) and copper phthalocyanines (CuPc) as the interfacial layers for controlling the spin-charge conversion. Relaxation of the out-of-plane magnetic hard axis of the NiFe/Pt junctions is observed, as a result of the modification of the interfacial magnetic structure. The transport measurements of the fabricated hybrid Hall bar junctions with NiFe/FePc/Pt and NiFe/CuPc/Pt reveal that although the intrinsic anisotropic magnetoresistance of the present Hall bar is maintained with the integration of interfacial metal phthalocyanine (MPc) layers, a change in the magnetic response along the axis perpendicular to the in-plane of Hall bars is observed, owing to the insertion of the interfacial MPc layers. The present method of interface engineering via integration of organic interfacial layers can act as a model system for controlling the spin-charge conversion behavior of magnetic heterojunction toward the development of multifunctional molecular-engineered spintronic devices.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jun Hong photo

Park, Jun Hong
나노신소재융합공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE