Detailed Information

Cited 4 time in webofscience Cited 6 time in scopus
Metadata Downloads

Mechanistic insight into gold nanorod transformation in nanoscale confinement of ZIF-8

Authors
Bae, CheongwonLee, JaedeokYao, LehanPark, SuhyeonLee, YeonjuLee, JieunChen, QianKim, Juyeong
Issue Date
Jan-2021
Publisher
TSINGHUA UNIV PRESS
Keywords
nanoscale confinement; core-shell structure; gold nanorod; metal-organic framework; oxidative etching; reductive regrowth
Citation
NANO RESEARCH, v.14, no.1, pp.66 - 73
Indexed
SCIE
SCOPUS
Journal Title
NANO RESEARCH
Volume
14
Number
1
Start Page
66
End Page
73
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/4261
DOI
10.1007/s12274-020-3042-z
ISSN
1998-0124
Abstract
Core-shell hybrid nanomaterials have shown new properties and functions that are not attainable by their single counterparts. Nanoscale confinement effect by porous inorganic shells in the hybrid nanostructures plays an important role for chemical transformation of the core nanoparticles. However, metal-organic frameworks (MOFs) have been rarely applied for understanding mechanical insight into such nanoscale phenomena in confinement, although MOFs would provide a variety of properties for the confining environment than other inorganic shells such as silica and zeolite. Here, we examine chemical transformation of a gold nanorod core enclosed by a zeolitic imidazolate framework (ZIF) through chemical etching and regrowth, followed by quantitative analysis in the core dimension and curvature. We find the nanorod core shows template-effective behavior in its morphological transformation. In the etching event, the nanorod core is spherically carved from its tips. The regrowth on the spherically etched core inside the ZIF gives rise to formation of a raspberry-like branched nanostructure in contrast to the growth of an octahedral shape in bulk condition. We attribute the shell-directed regrowth to void space generated at the interfaces between the etched core and the ZIF shell, intercrystalline gaps in multi-domain ZIF shells, and local structural deformation from the acidic reaction conditions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 화학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Ju Yeong photo

Kim, Ju Yeong
자연과학대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE