Cited 13 time in
Mechanistic insight into gold nanorod transformation in nanoscale confinement of ZIF-8
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Bae, Cheongwon | - |
| dc.contributor.author | Lee, Jaedeok | - |
| dc.contributor.author | Yao, Lehan | - |
| dc.contributor.author | Park, Suhyeon | - |
| dc.contributor.author | Lee, Yeonju | - |
| dc.contributor.author | Lee, Jieun | - |
| dc.contributor.author | Chen, Qian | - |
| dc.contributor.author | Kim, Juyeong | - |
| dc.date.accessioned | 2022-12-26T10:46:05Z | - |
| dc.date.available | 2022-12-26T10:46:05Z | - |
| dc.date.issued | 2021-01 | - |
| dc.identifier.issn | 1998-0124 | - |
| dc.identifier.issn | 1998-0000 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/4261 | - |
| dc.description.abstract | Core-shell hybrid nanomaterials have shown new properties and functions that are not attainable by their single counterparts. Nanoscale confinement effect by porous inorganic shells in the hybrid nanostructures plays an important role for chemical transformation of the core nanoparticles. However, metal-organic frameworks (MOFs) have been rarely applied for understanding mechanical insight into such nanoscale phenomena in confinement, although MOFs would provide a variety of properties for the confining environment than other inorganic shells such as silica and zeolite. Here, we examine chemical transformation of a gold nanorod core enclosed by a zeolitic imidazolate framework (ZIF) through chemical etching and regrowth, followed by quantitative analysis in the core dimension and curvature. We find the nanorod core shows template-effective behavior in its morphological transformation. In the etching event, the nanorod core is spherically carved from its tips. The regrowth on the spherically etched core inside the ZIF gives rise to formation of a raspberry-like branched nanostructure in contrast to the growth of an octahedral shape in bulk condition. We attribute the shell-directed regrowth to void space generated at the interfaces between the etched core and the ZIF shell, intercrystalline gaps in multi-domain ZIF shells, and local structural deformation from the acidic reaction conditions. | - |
| dc.format.extent | 8 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Tsinghua Univ Press | - |
| dc.title | Mechanistic insight into gold nanorod transformation in nanoscale confinement of ZIF-8 | - |
| dc.type | Article | - |
| dc.publisher.location | 중국 | - |
| dc.identifier.doi | 10.1007/s12274-020-3042-z | - |
| dc.identifier.scopusid | 2-s2.0-85091109233 | - |
| dc.identifier.wosid | 000570838200001 | - |
| dc.identifier.bibliographicCitation | Nano Research, v.14, no.1, pp 66 - 73 | - |
| dc.citation.title | Nano Research | - |
| dc.citation.volume | 14 | - |
| dc.citation.number | 1 | - |
| dc.citation.startPage | 66 | - |
| dc.citation.endPage | 73 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalResearchArea | Physics | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
| dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
| dc.subject.keywordPlus | METAL-ORGANIC-FRAMEWORK | - |
| dc.subject.keywordPlus | NANOPARTICLES | - |
| dc.subject.keywordPlus | SURFACE | - |
| dc.subject.keywordPlus | GROWTH | - |
| dc.subject.keywordPlus | TEMPERATURE | - |
| dc.subject.keywordPlus | STABILITY | - |
| dc.subject.keywordAuthor | nanoscale confinement | - |
| dc.subject.keywordAuthor | core-shell structure | - |
| dc.subject.keywordAuthor | gold nanorod | - |
| dc.subject.keywordAuthor | metal-organic framework | - |
| dc.subject.keywordAuthor | oxidative etching | - |
| dc.subject.keywordAuthor | reductive regrowth | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
