Detailed Information

Cited 42 time in webofscience Cited 59 time in scopus
Metadata Downloads

Regulation of gene expression in chickens by heat stressopen access

Authors
Goel, AkshatNcho, Chris MajorChoi, Yang-Ho
Issue Date
11-Jan-2021
Publisher
BMC
Keywords
Antioxidant; Gene expression; Heat stress; Immunity; Metabolism; Nutrient transporter; Poultry
Citation
JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY, v.12, no.1
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY
Volume
12
Number
1
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/4233
DOI
10.1186/s40104-020-00523-5
ISSN
1674-9782
Abstract
High ambient temperatures are a critical challenge in the poultry industry which is a key producer of the animal-based food. To evaluate heat stress levels, various parameters have been used, including growth rates, blood metabolites, and hormones. The most recent advances have explored expression profiling of genes that may play vital roles under stress. A high ambient temperature adversely affects nutrient uptake and is known to modulate the expression of genes encoding for sodium-dependent glucose transporters, glucose transporters, excitatory amino acid transporters, and fatty acid-binding proteins which are responsible for the absorption of macronutrients in the intestine. Various defensive activities are stimulated to protect the cell of different tissues from the heat-generated stress, including expression of early stress response genes coding for heat shock protein (HSP), c-FOS like protein, brain-derived neurotrophic factor (BDNF), and neuronal nitric oxide synthase (nNOS); antioxidant enzyme genes such as superoxide dismutase (SOD), catalase (CAT), and nicotinamide adenine dinucleotide phosphate oxidase (NOX4); and immune-related genes such as cytokines and toll-like receptors (TLRs). The potential role of HSPs in protecting the cell from stress and their presence in several tissues make them suitable markers to be evaluated under heat stress. BDNF and c-FOS genes expressed in the hypothalamus help cells to adapt to an adverse environment. Heat causes damage to the cell by generating reactive oxygen species (ROS). The NOX4 gene is the inducer of ROS under heat stress, which is in turns controlled by antioxidant enzymes such as SOD and CAT. TLRs are responsible for protecting against pathogenic attacks arising from enhanced membrane permeability, and cytokines help in controlling the pathogen and maintaining homeostasis. Thus, the evaluation of nutrient transporters and defense mechanisms using the latest molecular biology tools has made it possible to shed light on the complex cellular mechanism of heat-stressed chickens. As the impacts of heat stress on the above-mentioned aspects are beyond the extent to which the reduced growth performance could be explained, heat stress has more specific effects on the regulation of these genes than previously thought.Graphical abstractEffect of heat exposure on the nutrient transporters, antioxidants, and immune inflammation in chickens. Most of the nutrient transporters were suppressed under heat stress. Increase in the production of reactive oxygen species resulted in enhanced production of antioxidant enzymes. Expression of various proinflammatory cytokines and toll-like receptors were enhanced due to heat stress in chicken.
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 축산과학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Yang Ho photo

Choi, Yang Ho
농업생명과학대학 (축산과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE