Detailed Information

Cited 32 time in webofscience Cited 38 time in scopus
Metadata Downloads

Particulate Matter Removal Ability of Ten Evergreen Trees Planted in Korea Urban Greeningopen access

Authors
Jin, Eon JuYoon, Jun HyuckBae, Eun JiJeong, Byoung RyongYong, Seong HyeonChoi, Myung Suk
Issue Date
Apr-2021
Publisher
MDPI
Keywords
adsorption; broad-leaved tree; evergreen; particulate matter; SEM-energy dispersive X-ray
Citation
FORESTS, v.12, no.4
Indexed
SCIE
SCOPUS
Journal Title
FORESTS
Volume
12
Number
4
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/3937
DOI
10.3390/f12040438
ISSN
1999-4907
1999-4907
Abstract
Broad-leaved evergreen trees create urban forests for mitigation of climate warming and adsorption of particulate matter (PM). This study was performed to identify the species suitable for urban greening by examining the adsorption capacity of the evergreen species in urban areas in Korea, the adsorption points and the elemental composition of PM in the adsorbed tree. Leaf sampling was carried out four times (period of seven months from October 2017 to May 2018) and used after drying (period 28 to 37 days). Particulate matter (PM) was classified and measured according to size PM2.5 (0.2-2.5 mu m), PM10 (2.5-10 mu m), PM100 (10-100 mu m). The total amount of PM adsorbed on the leaf surface was highest in Pinus densiflora (24.6 mu g center dot cm(-2)), followed by Quercus salicina (47.4 mu g center dot cm(-2)). The composition of PM adsorbed by P. densiflora is 4.0% PM2.5, 39.5% PM10 and 56.5% PM100, while those adsorbed by Q. salicina are evergreen at 25.7% PM2.5, 27.4% PM10 and 46.9% PM100. When the amount of PM adsorbed on the leaf was calculated by LAI, the species that adsorbed PM the most was P. densiflora, followed by Q. salicina, followed by Q. salicina in the wax layer, then P. densiflora. As a result of this study, the amount of PM adsorbed per unit area of leaves, and the amount of PM calculated by LAI, showed a simpler pattern. The hardwoods had a high adsorption rate of PM2.5. The adsorption ratio of ultra-fine PM2.5 by evergreen broad-leaved trees was greater than that of coniferous trees. Therefore, broad-leaved evergreens such as Q. salicina are considered very suitable as species for adsorbing PM in the city. PM2.5 has been shown to be adsorbed through the pores and leaves of trees, indicating that the plant plays an important role in alleviating PM in the atmosphere. As a result of analyzing the elemental components of PM accumulated on leaf leaves by scanning electron microscopy (SEM)/ energy dispersive x-ray spectroscopy (EDXS) analysis, it was composed of O, C, Si, and N, and was found to be mainly generated by human activities around the road. The results of this study provide basic data regarding the selection of evergreen species that can effectively remove aerial PM. It also highlights the importance of evergreen plants for managing PM pollution during the winter and provides insights into planning additional green infrastructure to improve urban air quality.
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 환경산림과학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Myung Suk photo

Choi, Myung Suk
농업생명과학대학 (환경산림과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE