Detailed Information

Cited 5 time in webofscience Cited 9 time in scopus
Metadata Downloads

The Defense Response Involved in Sweetpotato Resistance to Root-Knot Nematode Meloidogyne incognita: Comparison of Root Transcriptomes of Resistant and Susceptible Sweetpotato Cultivars With Respect to Induced and Constitutive Defense Responsesopen access

Authors
Lee, Il-HwanKim, Ho SooNam, Ki JungLee, Kang-LokYang, Jung-WookKwak, Sang-SooLee, Jeung JooShim, DonghwanKim, Yun-Hee
Issue Date
5-May-2021
Publisher
FRONTIERS MEDIA SA
Keywords
constitutive defense; induced defense response; resistant cultivars; root-knot nematodes; susceptible cultivar; sweetpotato; transcriptome
Citation
FRONTIERS IN PLANT SCIENCE, v.12
Indexed
SCIE
SCOPUS
Journal Title
FRONTIERS IN PLANT SCIENCE
Volume
12
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/3715
DOI
10.3389/fpls.2021.671677
ISSN
1664-462X
Abstract
Sweetpotato (Ipomoea batatas [L.] Lam) is an economically important, nutrient- and pigment-rich root vegetable used as both food and feed. Root-knot nematode (RKN), Meloidogyne incognita, causes major yield losses in sweetpotato and other crops worldwide. The identification of genes and mechanisms responsible for resistance to RKN will facilitate the development of RKN resistant cultivars not only in sweetpotato but also in other crops. In this study, we performed RNA-seq analysis of RKN resistant cultivars (RCs; Danjami, Pungwonmi and Juhwangmi) and susceptible cultivars (SCs; Dahomi, Shinhwangmi and Yulmi) of sweetpotato infected with M. incognita to examine the induced and constitutive defense response-related transcriptional changes. During induced defense, genes related to defense and secondary metabolites were induced in SCs, whereas those related to receptor protein kinase signaling and protein phosphorylation were induced in RCs. In the uninfected control, genes involved in proteolysis and biotic stimuli showed differential expression levels between RCs and SCs during constitutive defense. Additionally, genes related to redox regulation, lipid and cell wall metabolism, protease inhibitor and proteases were putatively identified as RKN defense-related genes. The root transcriptome of SCs was also analyzed under uninfected conditions, and several potential candidate genes were identified. Overall, our data provide key insights into the transcriptional changes in sweetpotato genes that occur during induced and constitutive defense responses against RKN infection.
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 식물의학과 > Journal Articles
사범대학 > 생물교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Yun Hee photo

Kim, Yun Hee
사범대학 (생물교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE