Flow stress characterization of carbon steel S25C in the temperature range of cold forming with an emphasis on dynamic strain aging
- Authors
- Lee, H. J.; Razali, M. K.; Lee, K. H.; Joun, M. S.
- Issue Date
- Sep-2021
- Publisher
- ELSEVIER
- Keywords
- Flow stress; Mathematical model; Dynamic strain aging; Closed-form function; State variable-effective flow stress; DSA-effective flow stress
- Citation
- MATERIALS TODAY COMMUNICATIONS, v.28
- Indexed
- SCIE
SCOPUS
- Journal Title
- MATERIALS TODAY COMMUNICATIONS
- Volume
- 28
- URI
- https://scholarworks.bwise.kr/gnu/handle/sw.gnu/3309
- DOI
- 10.1016/j.mtcomm.2021.102483
- ISSN
- 2352-4928
- Abstract
- In this study, a new material model for carbon steel S25C, which exhibits typical dynamic strain aging (DSA), is presented. We detail the development of a closed-form function model. The total flow stress is divided into state variable-effective and DSA-effective flow stresses. The two flow stresses are first formulated as functions of temperature, with unknown material constants, at various strains and strain rates. They are then calculated using an optimization technique to minimize error. The material constants calculated at the sample points are fitted as functions of state variables and thus become material parameters; these are eventually used to describe the flow stress of S25C (with DSA) as a closed-form function. The proposed material model with fitted material parameters and constants was compared to the experimental flow stresses; the average and maximum error rates were 2.9 % and 10.3 %, respectively. Finally, we optimized the material constants and parameters to minimize the maximum errors of the sample state variables. We posed the problem as a min-max problem, and obtained average and maximum error rates of 1.4 % and 6.1 %, respectively. The importance of the closed-form function is emphasized in terms of its application to non-isothermal analyses, especially automatic multi-stage cold forging.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공학계열 > Division of Mechanical and Aerospace Engineering > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.