Detailed Information

Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads

Nonexistence of a [g(q)(5,d),5,d](q) code for 3(q)(4)-4(q)(3)-2(q)+1 <= d <= 3(q)(4)-4(q)(3)-qopen access

Authors
Cheon, E. J.Kato, T.Kim, S. J.
Issue Date
28-Jul-2008
Publisher
ELSEVIER SCIENCE BV
Keywords
Griesmer bound; linear code; projective space
Citation
DISCRETE MATHEMATICS, v.308, no.14, pp 3082 - 3089
Pages
8
Indexed
SCIE
SCOPUS
Journal Title
DISCRETE MATHEMATICS
Volume
308
Number
14
Start Page
3082
End Page
3089
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/27338
DOI
10.1016/j.disc.2007.08.033
ISSN
0012-365X
1872-681X
Abstract
In this paper, we shall prove that there is no [3q(4) - q(3) - q(2) - 3q - 1, 5, 3q(4) - 4q(3) - 2q + 1](q). code over the finite field F-q for q >= 11. Thus, we conclude the nonexistence of a [g(q) (5, d), 5, d](q) code for 3q(4) - 4q(3) - 2q + 1 <= d <= 3q(4) - 4q(3) - q. (c) 2007 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 수학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE