Cited 3 time in
Nonexistence of a [g(q)(5,d),5,d](q) code for 3(q)(4)-4(q)(3)-2(q)+1 <= d <= 3(q)(4)-4(q)(3)-q
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cheon, E. J. | - |
| dc.contributor.author | Kato, T. | - |
| dc.contributor.author | Kim, S. J. | - |
| dc.date.accessioned | 2022-12-27T06:07:13Z | - |
| dc.date.available | 2022-12-27T06:07:13Z | - |
| dc.date.issued | 2008-07-28 | - |
| dc.identifier.issn | 0012-365X | - |
| dc.identifier.issn | 1872-681X | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/27338 | - |
| dc.description.abstract | In this paper, we shall prove that there is no [3q(4) - q(3) - q(2) - 3q - 1, 5, 3q(4) - 4q(3) - 2q + 1](q). code over the finite field F-q for q >= 11. Thus, we conclude the nonexistence of a [g(q) (5, d), 5, d](q) code for 3q(4) - 4q(3) - 2q + 1 <= d <= 3q(4) - 4q(3) - q. (c) 2007 Elsevier B.V. All rights reserved. | - |
| dc.format.extent | 8 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | ELSEVIER SCIENCE BV | - |
| dc.title | Nonexistence of a [g(q)(5,d),5,d](q) code for 3(q)(4)-4(q)(3)-2(q)+1 <= d <= 3(q)(4)-4(q)(3)-q | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1016/j.disc.2007.08.033 | - |
| dc.identifier.scopusid | 2-s2.0-43049150145 | - |
| dc.identifier.wosid | 000256239900016 | - |
| dc.identifier.bibliographicCitation | DISCRETE MATHEMATICS, v.308, no.14, pp 3082 - 3089 | - |
| dc.citation.title | DISCRETE MATHEMATICS | - |
| dc.citation.volume | 308 | - |
| dc.citation.number | 14 | - |
| dc.citation.startPage | 3082 | - |
| dc.citation.endPage | 3089 | - |
| dc.type.docType | Article; Proceedings Paper | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | QUATERNARY LINEAR CODES | - |
| dc.subject.keywordPlus | MINIMUM LENGTH | - |
| dc.subject.keywordPlus | DIMENSION-5 | - |
| dc.subject.keywordAuthor | Griesmer bound | - |
| dc.subject.keywordAuthor | linear code | - |
| dc.subject.keywordAuthor | projective space | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
