Detailed Information

Cited 39 time in webofscience Cited 0 time in scopus
Metadata Downloads

Unraveling the Morphology-Function Relationships of Polyamide Membranes Using Quantitative Electron Tomography

Authors
Song, XiaohuiSmith, John W.Kim, JuyeongZaluzec, Nestor J.Chen, WenxianAn, HyosungDennison, Jordan M.Cahill, David G.Kulzick, Matthew A.Chen, Qian
Issue Date
27-Feb-2019
Publisher
AMER CHEMICAL SOC
Keywords
synthesis-morphology-function relationship; 3D reconstruction; polymer electron tomography; polyamide membranes; nanoscale morphometry
Citation
ACS APPLIED MATERIALS & INTERFACES, v.11, no.8, pp.8517 - 8526
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
11
Number
8
Start Page
8517
End Page
8526
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/9415
DOI
10.1021/acsami.8b20826
ISSN
1944-8244
Abstract
An understanding of how complex nanoscale morphologies emerge from synthesis would offer powerful strategies to construct soft materials with designed structures and functions. However, these kinds of morphologies have proven difficult to characterize, and therefore manipulate, because they are three-dimensional (3D), nanoscopic, and often highly irregular. Here, we studied polyamide (PA) membranes used in wastewater reclamation as a prime example of this challenge. Using electron tomography and quantitative morphometry, we reconstructed the nanoscale morphology of 3D crumples and voids in PA membranes for the first time. Various parameters governing film transport properties, such as surface-to-volume ratio and mass-per-area, were measured directly from the reconstructed membrane structure. In addition, we extracted information inaccessible by other means. For example, 3D reconstruction shows that membrane nanostructures are formed from PA layers 15-20 nm thick folding into 3D crumples which envelope up to 30% void by volume. Mapping local curvature and thickness in 3D quantitatively groups these crumples into three classes, "domes", "dimples", and "clusters", each being a distinct type of microenvironment. Elemental mapping of metal ion adsorption across the film demonstrates that these previously missed parameters are relevant to membrane performance. This imaging morphometry platform can be applicable to other nanoscale soft materials and potentially suggests engineering strategies based directly on synthesis morphology function relationships.
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 화학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Ju Yeong photo

Kim, Ju Yeong
자연과학대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE