Detailed Information

Cited 9 time in webofscience Cited 9 time in scopus
Metadata Downloads

Predictive Modeling for the Growth of Aeromonas hydrophila on Lettuce as a Function of Combined Storage Temperature and Relative Humidity

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Shin Young-
dc.contributor.authorChoi, Song-Yi-
dc.contributor.authorHa, Sang-Do-
dc.date.accessioned2022-12-26T14:48:01Z-
dc.date.available2022-12-26T14:48:01Z-
dc.date.issued2019-06-01-
dc.identifier.issn1535-3141-
dc.identifier.issn1556-7125-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/9053-
dc.description.abstractThis study developed predictive growth models of Aeromonas hydrophila on lettuce as a function of combined storage temperature (15-35 degrees C) and relative humidity (RH, 60-80%) using a polynomial equation. The primary model of specific growth rate, lag time, and maximum population density showed a good fit (R-2 >= 0.95) with a Gompertz equation. A secondary model was obtained using a quadratic polynomial equation. The appropriateness of the secondary model was verified by mean square error (0.0001-0.8848), bias factor (B-f = 0.962-1.009), and accuracy factor (A(f) = 1.002-1.104). The newly developed secondary models for A. hydrophila could be incorporated into the tertiary modeling program to predict the growth of A. hydrophila as a function of combined temperature and RH. The developed model may be useful to predict potential A. hydrophila growth on lettuce, which is important for food safety purpose during the overall food chain of lettuce from farm to table. It could offer reliable and useful information of growth kinetics for the quantification of microbial risk assessment of A. hydrophila on lettuce.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherMARY ANN LIEBERT, INC-
dc.titlePredictive Modeling for the Growth of Aeromonas hydrophila on Lettuce as a Function of Combined Storage Temperature and Relative Humidity-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1089/fpd.2018.2590-
dc.identifier.scopusid2-s2.0-85066859678-
dc.identifier.wosid000470693600002-
dc.identifier.bibliographicCitationFOODBORNE PATHOGENS AND DISEASE, v.16, no.6, pp 376 - 383-
dc.citation.titleFOODBORNE PATHOGENS AND DISEASE-
dc.citation.volume16-
dc.citation.number6-
dc.citation.startPage376-
dc.citation.endPage383-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaFood Science & Technology-
dc.relation.journalWebOfScienceCategoryFood Science & Technology-
dc.subject.keywordPlusMODIFIED-ATMOSPHERE-
dc.subject.keywordPlusSODIUM-CHLORIDE-
dc.subject.keywordPlusLISTERIA-
dc.subject.keywordPlusPH-
dc.subject.keywordPlusVEGETABLES-
dc.subject.keywordPlusSURVIVAL-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusSPP.-
dc.subject.keywordAuthorAeromonas hydrophila-
dc.subject.keywordAuthorlettuce-
dc.subject.keywordAuthortemperature-
dc.subject.keywordAuthorrelative humidity-
dc.subject.keywordAuthorpredictive growth model-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > Seafood science & Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Shin Young photo

Park, Shin Young
해양과학대학 (해양식품생명의학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE