Cited 0 time in
Research on Foreign Matter Detection in Press Molds Using AI Vision System
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Jin | - |
| dc.contributor.author | Ha, Jeong Min | - |
| dc.contributor.author | Cho, Min Ju | - |
| dc.contributor.author | Park, Jae Il | - |
| dc.contributor.author | Kim, Yong Zoo | - |
| dc.contributor.author | Kim, Gab Soon | - |
| dc.date.accessioned | 2025-11-24T07:00:12Z | - |
| dc.date.available | 2025-11-24T07:00:12Z | - |
| dc.date.issued | 2025-10 | - |
| dc.identifier.issn | 1976-5622 | - |
| dc.identifier.issn | 2233-4335 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/80959 | - |
| dc.description.abstract | This study presents an artificial intelligence (AI) vision system for detecting foreign matter in press molds during bevel gear forming. To enhance the productivity of bevel gear manufacturing, the lower mold is fixed to the base of the press, while the upper mold is moved vertically to print; any foreign material in the lower mold can cause damage. A small camera mounted at the center of the upper mold captures consistent images of the lower mold, which are labeled as normal or abnormal (containing foreign matter) and used to train a YOLOv3-based model. The trained system automatically identifies foreign objects inside the lower mold in real time. The developed AI program demonstrates accurate detection of foreign substances and potential for practical deployment in press operations. | - |
| dc.format.extent | 7 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | 제어·로봇·시스템학회 | - |
| dc.title | Research on Foreign Matter Detection in Press Molds Using AI Vision System | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.5302/J.ICROS.2025.25.0164 | - |
| dc.identifier.scopusid | 2-s2.0-105019320404 | - |
| dc.identifier.bibliographicCitation | 제어.로봇.시스템학회 논문지, v.31, no.10, pp 1130 - 1136 | - |
| dc.citation.title | 제어.로봇.시스템학회 논문지 | - |
| dc.citation.volume | 31 | - |
| dc.citation.number | 10 | - |
| dc.citation.startPage | 1130 | - |
| dc.citation.endPage | 1136 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART003251942 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.subject.keywordAuthor | AI (Artificial Intelligence) | - |
| dc.subject.keywordAuthor | bevel gear | - |
| dc.subject.keywordAuthor | CNN (Convolutional Neural Network) | - |
| dc.subject.keywordAuthor | press mold | - |
| dc.subject.keywordAuthor | vision system | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
