Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mass-customization of organic photovoltaics and data production for machine learning models precisely predicting device behavior

Authors
An, Na GyeongNg, Leonard Wei TatLiu, YangSong, SeyeongGao, MeiZhou, YinhuaMa, Chang-QiWei, ZhixiangKim, Jin YoungBach, UdoVak, Doojin
Issue Date
Oct-2025
Publisher
Royal Society of Chemistry
Citation
Energy & Environmental Science, v.18, no.21, pp 9524 - 9537
Pages
14
Indexed
SCIE
SCOPUS
Journal Title
Energy & Environmental Science
Volume
18
Number
21
Start Page
9524
End Page
9537
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/80904
DOI
10.1039/d5ee02815a
ISSN
1754-5692
1754-5706
Abstract
High-throughput experimentation (HTE) combined with machine learning (ML) has emerged as a powerful tool to accelerate material discovery or optimize fabrication processes. However, in the photovoltaics field, only a few studies have successfully applied this approach using industrially relevant techniques, such as the roll-to-roll (R2R) process. We developed a universal and extendable data structure for ML training that accommodates upcoming materials, while retaining compatibility with the existing dataset. Using the MicroFactory platform, which enables mass-customization of organic photovoltaics (OPVs), we fabricated and characterized over 26 000 unique cells within four days. To guide the selection of the ML model for precisely predicting device behavior, photovoltaic parameter and J-V prediction models to forecast device parameters and J-V curves, respectively, were developed. The Random Forest model proved to be the most effective, achieving a PCE of 11.8% (0.025 cm2)-the highest for a fully-R2R-fabricated OPV. By integrating accumulated datasets with smaller new-component datasets, we enhanced model performance for PM6:Y6:IT-4F and PM6:D18:L8-BO systems, showing that models trained on binary systems can predict ternary device performance and enabling the development of generalized ML models for future high-performance materials.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE