Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Classification of geographical origin of wheat flour using NIR spectroscopy and femtosecond LA-ICP-MS coupled with chemometric models

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Geonwoo-
dc.contributor.authorBaek, Kyounghye-
dc.contributor.authorHidayat, Mohamad Soleh-
dc.contributor.authorJeong, Jimin-
dc.contributor.authorKim, Ho Jin-
dc.contributor.authorKim, Hyoyoung-
dc.contributor.authorKim, Yong-Kyoung-
dc.date.accessioned2025-11-10T08:30:10Z-
dc.date.available2025-11-10T08:30:10Z-
dc.date.issued2025-11-
dc.identifier.issn0026-265X-
dc.identifier.issn1095-9149-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/80773-
dc.description.abstractWheat flour is a staple commodity widely consumed globally as a wheat-derived product with various characteristics. These characteristics are essential as they influence product security, quality, and pricing. Geographical origin (GO) is a valuable way to classify products based on their physical and chemical attributes. This study combined near-infrared spectroscopy (NIRS) and femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fsLA-ICP-MS) results with a chemometric approach to classify the geographic origin of domestic and imported wheat flour. Partial least-squares discriminant analysis (PLS-DA) and radial basis function support vector machine (RBF-SVM) were employed to classify and analyze the correlation structure and variance within the data with significant differentiating elements including 24Mg, 55Mn, 31P, 56Fe, 66Zn, 121Sb, 107Ag, 208Pb, 140Ce, and 133Cs. Six preprocessing analyses were performed to enhance data quality and accuracy. Combining NIRS with fsLA-ICP-MS data in the RBF-SVM model, the standard normal variate (SNV) achieved an accuracy of 95 %. Meanwhile, the PLS-DA method employed mean normalization, smoothing, Savitzky-Golay first derivative (SG1), and Savitzky-Golay second derivative (SG2), identified as the highest-performing preprocessing techniques, resulting in 100 % accuracy.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleClassification of geographical origin of wheat flour using NIR spectroscopy and femtosecond LA-ICP-MS coupled with chemometric models-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.microc.2025.115596-
dc.identifier.scopusid2-s2.0-105018182753-
dc.identifier.wosid001598150300003-
dc.identifier.bibliographicCitationMicrochemical Journal, v.218-
dc.citation.titleMicrochemical Journal-
dc.citation.volume218-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.subject.keywordPlusPLASMA-MASS SPECTROMETRY-
dc.subject.keywordPlusINFRARED REFLECTANCE SPECTROSCOPY-
dc.subject.keywordPlusLASER-ABLATION-
dc.subject.keywordPlusELEMENTS-
dc.subject.keywordPlusQUANTIFICATION-
dc.subject.keywordPlusDISCRIMINATION-
dc.subject.keywordPlusRECOGNITION-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordAuthorWheat flour-
dc.subject.keywordAuthorGeographical origin-
dc.subject.keywordAuthorNear-infrared spectroscopy-
dc.subject.keywordAuthorFemtosecond LA-ICP-MS-
dc.subject.keywordAuthorPartial least squares-discriminant analysis-
dc.subject.keywordAuthorRadial kernel support vector machine-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 생물산업기계공학과 > Journal Articles
자연과학대학 > 식품영양학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Geonwoo photo

Kim, Geonwoo
농업생명과학대학 (생물산업기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE