Deep Learning-Based Iodine Contrast Augmentation for Suboptimally Enhanced CT Pulmonary Angiography: Implications for Pulmonary Embolism Diagnosisopen access
- Authors
- Bae, Kyungsoo; Kim, Tae Hoon; Jeon, Kyung Nyeo
- Issue Date
- Sep-2025
- Publisher
- MDPI AG
- Keywords
- pulmonary embolism; CT; deep learning; iodine; contrast agent
- Citation
- Diagnostics, v.15, no.18
- Indexed
- SCIE
SCOPUS
- Journal Title
- Diagnostics
- Volume
- 15
- Number
- 18
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/80611
- DOI
- 10.3390/diagnostics15182325
- ISSN
- 2075-4418
2075-4418
- Abstract
- Background/Objectives: This study aimed to assess the impact of a deep learning-based iodine contrast augmentation (DLCA) algorithm on image quality and diagnostic performance for pulmonary embolism (PE) detection in suboptimally enhanced CT pulmonary angiography (CTPA). Methods: We retrospectively included 103 suboptimal CTPA cases performed between May 2020 and March 2025. Image quality (attenuation, noise, SNR, and CNR) was compared between original and DLCA-processed images. Diagnostic performance for PE detection was assessed per segment, with and without DLCA processing. Results: DLCA increased pulmonary artery opacification by 57.7% and reduced noise by 56.7%, significantly improving SNR (13.2 -> 47.5) and CNR (8.7 -> 37.2; both p < 0.001). Incorporation of DLCA-processed images improved diagnostic accuracy for overall (AUC: 0.874/0.845 -> 0.958/0.938), central (0.939/0.895 -> 0.987/0.972), and peripheral (0.824/0.807 -> 0.935/0.912) PE detection (all p <= 0.003). In suboptimal CTPA, a pulmonary artery attenuation threshold of 130 HU was identified, above which DLCA processing significantly improved PE detection accuracy compared with original images in both readers (p < 0.001). Conclusions: DLCA processing in suboptimal CTPA significantly enhances image quality and diagnostic accuracy for PE detection, providing a promising strategy to optimize scans without additional contrast or radiation.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Medicine > Department of Medicine > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.