Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Multimodal Deep Learning Model for Cross-Project Issue Classification

Full metadata record
DC Field Value Language
dc.contributor.authorKwak, Changwon-
dc.contributor.authorHeo, Jueun-
dc.contributor.authorJung, Pilsu-
dc.contributor.authorLee, Seonah-
dc.date.accessioned2025-10-21T06:30:17Z-
dc.date.available2025-10-21T06:30:17Z-
dc.date.issued2025-09-
dc.identifier.issn2169-3536-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/80294-
dc.description.abstractSoftware continuously evolves through changes, and issue reports encapsulate these change requests. In the GitHub system, a labeling mechanism has been introduced for systematic issue management, but significant effort from developers is required to label and manage these issues. To address this, numerous attempts have been made in previous research to automate issue report classification. However, these attempts have shown limitations in classification accuracy. We experiment to determine if integrating heterogeneous information through a multimodal model that combines text, images, and code from issue reports can improve classification accuracy. Specifically, we investigate whether training the model on extensive issue data can enhance classification accuracy. Experimental results show that the multimodal approach outperforms single-modal models by 5.50-7.01% in terms of F1-Score, demonstrating superior performance. These findings indicate that leveraging heterogeneous data sources in issue reports is effective in improving classification performance.-
dc.format.extent16-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleA Multimodal Deep Learning Model for Cross-Project Issue Classification-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ACCESS.2025.3613404-
dc.identifier.scopusid2-s2.0-105017387059-
dc.identifier.wosid001586193100043-
dc.identifier.bibliographicCitationIEEE Access, v.13, pp 168839 - 168854-
dc.citation.titleIEEE Access-
dc.citation.volume13-
dc.citation.startPage168839-
dc.citation.endPage168854-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordAuthorcode-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorimage-
dc.subject.keywordAuthorissue classification-
dc.subject.keywordAuthorissue reports-
dc.subject.keywordAuthormulti-class classification-
dc.subject.keywordAuthormultimodal-
dc.subject.keywordAuthortext-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > AI융합공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seon Ah photo

Lee, Seon Ah
IT공과대학 (소프트웨어공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE