A New Infeasible Projection Method for Stochastic Variational Inequality Problem
- Authors
- Wang, Shenghua; Zhang, Yueyao; Cho, Yeol Je
- Issue Date
- Sep-2025
- Publisher
- Kluwer Academic/Plenum Publishers
- Keywords
- Stochastic variational inequality; Stochastic approximation; Golden ratio method; Projection method
- Citation
- Journal of Optimization Theory and Applications, v.208, no.1
- Indexed
- SCIE
SCOPUS
- Journal Title
- Journal of Optimization Theory and Applications
- Volume
- 208
- Number
- 1
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/80066
- DOI
- 10.1007/s10957-025-02825-y
- ISSN
- 0022-3239
1573-2878
- Abstract
- In this paper, we propose a new infeasible stochastic approximation projection method based on the golden ratio for a nonmonotone stochastic variational inequality problem. In the traditional golden ratio methods, the constant phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is taken as 1+52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1+\sqrt{5}}{2}$$\end{document}. However, the constant is relaxed to the interval (1,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document} in our method. A new self-adaptive step size which is admitted to be increasing is generated for dealing with the unknown Lipschitz constant of the mapping. The almost sure convergence and convergence rate of the proposed method are shown. Some numerical examples are given to illustrate the competitiveness of our algorithm compared to the related algorithms in the literature. Finally, we apply our method to solve a network bandwidth allocation problem.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 사범대학 > 수학교육과 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.