Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A New Infeasible Projection Method for Stochastic Variational Inequality Problem

Authors
Wang, ShenghuaZhang, YueyaoCho, Yeol Je
Issue Date
Sep-2025
Publisher
Kluwer Academic/Plenum Publishers
Keywords
Stochastic variational inequality; Stochastic approximation; Golden ratio method; Projection method
Citation
Journal of Optimization Theory and Applications, v.208, no.1
Indexed
SCIE
SCOPUS
Journal Title
Journal of Optimization Theory and Applications
Volume
208
Number
1
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/80066
DOI
10.1007/s10957-025-02825-y
ISSN
0022-3239
1573-2878
Abstract
In this paper, we propose a new infeasible stochastic approximation projection method based on the golden ratio for a nonmonotone stochastic variational inequality problem. In the traditional golden ratio methods, the constant phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is taken as 1+52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1+\sqrt{5}}{2}$$\end{document}. However, the constant is relaxed to the interval (1,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document} in our method. A new self-adaptive step size which is admitted to be increasing is generated for dealing with the unknown Lipschitz constant of the mapping. The almost sure convergence and convergence rate of the proposed method are shown. Some numerical examples are given to illustrate the competitiveness of our algorithm compared to the related algorithms in the literature. Finally, we apply our method to solve a network bandwidth allocation problem.
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE