Cited 0 time in
A New Infeasible Projection Method for Stochastic Variational Inequality Problem
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Wang, Shenghua | - |
| dc.contributor.author | Zhang, Yueyao | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.date.accessioned | 2025-09-15T02:00:14Z | - |
| dc.date.available | 2025-09-15T02:00:14Z | - |
| dc.date.issued | 2025-09 | - |
| dc.identifier.issn | 0022-3239 | - |
| dc.identifier.issn | 1573-2878 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/80066 | - |
| dc.description.abstract | In this paper, we propose a new infeasible stochastic approximation projection method based on the golden ratio for a nonmonotone stochastic variational inequality problem. In the traditional golden ratio methods, the constant phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is taken as 1+52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1+\sqrt{5}}{2}$$\end{document}. However, the constant is relaxed to the interval (1,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document} in our method. A new self-adaptive step size which is admitted to be increasing is generated for dealing with the unknown Lipschitz constant of the mapping. The almost sure convergence and convergence rate of the proposed method are shown. Some numerical examples are given to illustrate the competitiveness of our algorithm compared to the related algorithms in the literature. Finally, we apply our method to solve a network bandwidth allocation problem. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Kluwer Academic/Plenum Publishers | - |
| dc.title | A New Infeasible Projection Method for Stochastic Variational Inequality Problem | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1007/s10957-025-02825-y | - |
| dc.identifier.scopusid | 2-s2.0-105015144395 | - |
| dc.identifier.wosid | 001565034700001 | - |
| dc.identifier.bibliographicCitation | Journal of Optimization Theory and Applications, v.208, no.1 | - |
| dc.citation.title | Journal of Optimization Theory and Applications | - |
| dc.citation.volume | 208 | - |
| dc.citation.number | 1 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Operations Research & Management Science | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | SUBGRADIENT EXTRAGRADIENT METHOD | - |
| dc.subject.keywordPlus | APPROXIMATION METHODS | - |
| dc.subject.keywordPlus | VARIANCE REDUCTION | - |
| dc.subject.keywordAuthor | Stochastic variational inequality | - |
| dc.subject.keywordAuthor | Stochastic approximation | - |
| dc.subject.keywordAuthor | Golden ratio method | - |
| dc.subject.keywordAuthor | Projection method | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
