Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Phonon-Assisted Charge Trapping and Threshold Voltage Modulation in MoS2FETs with AlOxNyOverlayers

Authors
Nam, SangwooAhn, HanyeolPark, BeomjinGu, MinseonPark, Hyun SuChoi, SeungchulChang, Young JunHan, Moonsup
Issue Date
Aug-2025
Publisher
American Chemical Society
Keywords
doping; hysteresis; interfacial interaction; MoS2; neuromorphic computing; phonon; temperature dependence; trap states
Citation
ACS Applied Materials & Interfaces, v.17, no.34, pp 48592 - 48599
Pages
8
Indexed
SCIE
SCOPUS
Journal Title
ACS Applied Materials & Interfaces
Volume
17
Number
34
Start Page
48592
End Page
48599
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/79879
DOI
10.1021/acsami.5c07597
ISSN
1944-8244
1944-8252
Abstract
In this study, we demonstrate that a room-temperature reactively sputtered aluminum oxynitride (AlOxNy) overlayer enables both effective doping and pronounced threshold voltage hysteresis in multilayer MoS2FETs, while preserving field-effect mobility. Compared to conventional AlOx, the AlOxNylayer introduces trap states that are energetically aligned with the conduction band of MoS2, facilitating charge exchange across the heterointerface. Capacitance–voltage measurements confirm that nitrogen incorporation reduces the effective fixed charge density, enabling mobility-preserving operation without thermal annealing. Notably, the hysteresis window exhibits a marked expansion above ∼250 K, which correlates with the activation of out-of-plane phonon modes in MoS2. These phonons are proposed to assist in activating interfacial trap states within the AlOxNylayer, as supported by temperature-dependent electrical and spectroscopic analyses. While such trap-induced hysteresis may be undesirable for logic circuits, it offers valuable functionality for emerging device architectures─such as in-memory computing and neuromorphic systems─where hysteresis can be exploited. These findings underscore the potential of AlOxNyas a low-temperature-processable dielectric for 2D FETs and advance a new perspective on phonon-assisted interfacial charge modulation.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE