Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Flat meets functional: face-to-face 2D/2D S-scheme photocatalysts for efficient CO2-to-fuel conversion

Authors
Rana, ParulSingh, PardeepPuri, VanitaLe, Quyet VanAhamad, TansirLe, Thi ThuNguyen, Van-HuyRaizada, Pankaj
Issue Date
Sep-2025
Publisher
ROYAL SOC CHEMISTRY
Citation
Sustainable Energy & Fuels, v.9, no.18, pp 4832 - 4857
Pages
26
Indexed
SCIE
SCOPUS
Journal Title
Sustainable Energy & Fuels
Volume
9
Number
18
Start Page
4832
End Page
4857
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/79679
DOI
10.1039/d5se00754b
ISSN
2398-4902
2398-4902
Abstract
The rapidly increasing levels of atmospheric CO2 have intensified the demand for sustainable carbon mitigation technologies. Among various approaches, photocatalytic CO2 reduction (PCO2R) has emerged as a compelling solar-driven route to transform CO2 into value-added chemical fuels. This review systematically summarizes the recent progress in the rational design and fabrication of face-to-face 2D/2D S-scheme heterostructures for efficient PCO2R. Specific attention is devoted to the internal electric field (IEF), band alignment, and interfacial engineering to facilitate directional charge separation and suppress recombination losses. The synergistic interactions within diverse 2D/2D heterostructures, including metal oxides, sulphides, and carbon-based materials, are elucidated through insights from advanced in situ characterization techniques, including X-ray photoelectron spectroscopy (XPS), Kelvin probe force microscopy (KPFM), and density functional theory (DFT) studies. Furthermore, this review outlines the possible future directions, highlighting opportunities in theoretical modelling, tandem catalysis systems, scalable synthesis strategies, and integrated multifunctional applications that couple CO2 conversion with environmental remediation. This comprehensive overview provides a scientific foundation and practical roadmap for the strategic development of next-generation photocatalysts toward high-efficiency solar-to-chemical energy conversion.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE