Fusion Prototypical Network for 3D Scene Graph Prediction
- Authors
- Bae, Jiho; Choi, Bogyu; Yeon, Sumin; Lee, Suwon
- Issue Date
- Jun-2025
- Publisher
- Tech Science Press
- Keywords
- 3D scene graph prediction; prototypical network; 3D scene understanding
- Citation
- CMES - Computer Modeling in Engineering and Sciences, v.143, no.3, pp 2991 - 3003
- Pages
- 13
- Indexed
- SCIE
SCOPUS
- Journal Title
- CMES - Computer Modeling in Engineering and Sciences
- Volume
- 143
- Number
- 3
- Start Page
- 2991
- End Page
- 3003
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/79502
- DOI
- 10.32604/cmes.2025.064789
- ISSN
- 1526-1492
1526-1506
- Abstract
- Scene graph prediction has emerged as a critical task in computer vision, focusing on transforming complex visual scenes into structured representations by identifying objects, their attributes, and the relationships among them. Extending this to 3D semantic scene graph (3DSSG) prediction introduces an additional layer of complexity because it requires the processing of point-cloud data to accurately capture the spatial and volumetric characteristics of a scene. A significant challenge in 3DSSG is the long-tailed distribution of object and relationship labels, causing certain classes to be severely underrepresented and suboptimal performance in these rare categories. To address this, we proposed a fusion prototypical network (FPN), which combines the strengths of conventional neural networks for 3DSSG with a Prototypical Network. The former are known for their ability to handle complex scene graph predictions while the latter excels in few-shot learning scenarios. By leveraging this fusion, our approach enhances the overall prediction accuracy and substantially improves the handling of underrepresented labels. Through extensive experiments using the 3DSSG dataset, we demonstrated that the FPN achieves state-of-the-art performance in 3D scene graph prediction as a single model and effectively mitigates the impact of the long-tailed distribution, providing a more balanced and comprehensive understanding of complex 3D environments.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - ETC > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.