ResNet 기반의 이미지 분류 딥러닝을 이용한 정수처리 여과 공정 내 깔따구 유충 탐지 가능 타당성 평가에 관한 연구open accessA feasibility Study of Detecting Chironomidae Larva in Water Treatment Filtration Processes using ResNet-based Image Recognition Deep Learning
- Other Titles
- A feasibility Study of Detecting Chironomidae Larva in Water Treatment Filtration Processes using ResNet-based Image Recognition Deep Learning
- Authors
- 박시형; 최명언; 이승용; 김종오; 박노석
- Issue Date
- May-2025
- Publisher
- 대한환경공학회
- Keywords
- chironomidae larva; ResNet model; deep learning; activated carbon filters; 깔따구 유충; ResNet 모델; 딥러닝; 활성탄 여과지
- Citation
- 대한환경공학회지, v.47, no.5, pp 354 - 365
- Pages
- 12
- Indexed
- KCI
- Journal Title
- 대한환경공학회지
- Volume
- 47
- Number
- 5
- Start Page
- 354
- End Page
- 365
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/78762
- DOI
- 10.4491/KSEE.2025.47.5.354
- ISSN
- 1225-5025
2383-7810
- Abstract
- 본 연구에서는 정수 처리 공정 중 모래 및 활성탄 여과지에서 출현 가능성이 있는 깔따구 유충의 유무를 여재 시료 샘플링 이미지 데이터 분석을 통해 자동으로 판별이 가능한지 알아보고자 수행하였다. 본 연구에서는 정수 처리 공정에 사용되는 모래 및 활성탄 여재라는 간섭 물질이 있는 배경을 대상으로 깔따구 유충이 있는 경우와 없는 경우 이미지 데이터를 생성하여 이미지 분류 딥러닝 모델 중 하나인 ResNet을 이용하여 학습시켜 그 정확도를 검증⁃평가하였다. 12개의 모델 중 TPR가 높은 상위 3개의 모델은 ResNet50 No-pretrained LR=0.1, ResNet18 No-pretrained LR=0.001, ResNet18 No-pretrained LR=0.01 순으로 나타났다. 사전 학습 없이 ResNet 모델의 구조만 가져와 학습시킨 모델들이 성능이 우수했다. TPR이 높은 상위 3개의 모델은 ResNet50 No-pretrained LR=0.1, ResNet18 No-pretrained LR=0.001, ResNet18 No-pretrained LR=0.01 순으로 나타났다. 하지만 TPR이 가장 높은 ResNet50 No-pretrained LR=0.1의 경우 TPR의 값이 크지만, FPR 또한 크게 나타나 정수처리 과정에서 깔따구 유무를 판결하는데 적합하지 않다고 판단됐다. TPR이 두 번째와 세 번째로 높은 ResNet18 No-pretrained LR=0.001과 ResNet18 No-pretrained LR=0.01을 비교했을 때 ResNet18 No-pretrained LR=0.01 모델이 Accuracy와 F1 Score가 더 높아 상대적으로 더 신뢰할 수 있는 모델로 평가 되었다. 결론적으로 TPR, FPR, Accuracy, F1 Score의 값으로 판단한 결과 사전 학습 없는 ResNet18 No-pretrained L=0.01 모델이 깔따구 유충의 유무를 판별하는데 가장 적합한 모델로 판단되었다.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공학계열 > 토목공학과 > Journal Articles
- 공과대학 > Department of Civil Engineering > Journal Articles
- 공과대학 > 도시공학과 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.