Detailed Information

Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

A Two-stage AI Framework to Detect and Classify White Blood Cells for Supporting Diseases Diagnosis in Veterinary Medicine

Authors
Jeong, KyungchangKim, MinjiCho, GyuchanOh, HongseokJeong, JaeminLee, YeongyuSeo, HanbitYu, DohyeonBae, HyeonaHyun, Sang-HwanJeong, Ji-HoonLee, Euijong
Issue Date
Jan-2025
Keywords
Deep Learning; DenseNet; Two-Stage Framework; WBCs Detection and Classification; YOLO-v8
Citation
IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp 4436 - 4443
Pages
8
Indexed
SCOPUS
Journal Title
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Start Page
4436
End Page
4443
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/77164
DOI
10.1109/BIBM62325.2024.10822218
ISSN
2156-1125
2156-1133
Abstract
In veterinary medicine, the analysis of blood smears is crucial for diagnosing diseases such as systemic inflammatory response syndrome (SIRS) and sepsis, necessitating the identification and classification of white blood cells. Traditionally, this analysis is performed manually by observers, a process that is not only time-consuming and labor-intensive but also prone to variability in results between different observers. To address these challenges, this study introduces a two-stage framework that automates the detection and classification of white blood cells in smear images. Utilizing the YOLO-v8 model to detect all intact cells and the DenseNet model for classifying six distinct cell types, the framework aims to streamline the diagnostic process. Experimental results for the proposed two-stage framework demonstrate a mAP@50 of 0.964 for white blood cells detection and an accuracy of 0.836 for classification, surpassing conventional single-object detection models in both detection accuracy and classification efficacy. © 2024 IEEE.
Files in This Item
There are no files associated with this item.
Appears in
Collections
수의과대학 > Department of Veterinary Medicine > Journal Articles
의학계열 > 수의학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yu, Do Hyeon photo

Yu, Do Hyeon
수의과대학 (수의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE