Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Baicalin ameliorated glutamate toxicity-induced nerve damage in mouse-derived hippocampal neuronal HT22 cells

Authors
Hyun-Kyoung SonPhil-Ok Koh
Issue Date
Dec-2024
Publisher
한국예방수의학회
Keywords
Baicalin; Glutamate; HT22; Neuroprotection
Citation
예방수의학회지, v.48, no.4, pp 229 - 235
Pages
7
Indexed
KCI
Journal Title
예방수의학회지
Volume
48
Number
4
Start Page
229
End Page
235
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/75685
ISSN
2287-7991
2287-8009
Abstract
Baicalin, a flavonoid isolated from Scutellaria baicalensis, has anti-inflammatory, antioxidant, and neuroprotective effects. Glutamate is a major neurotransmitter that plays an important role in brain function, but excessive release of glutamate causes excitotoxicity and damages cells. We investigated the neuroprotective effects of baicalin in glutamate-exposed neurons. The mouse hippocampal neuronal cell line (HT22) was cultured in a general manner, glutamate and/or baicalin were treated on the cells. Baicalin was administered 1 hr before glutamate treatment. Cells were collected 24 hr after glutamate, and cell viability was measured using MTT assay. Reactive oxygen species (ROS) and lipid peroxidation (LPO) assays were performed to measure oxidative stress. Glutamate reduced cell viability in a dose- and time-dependent manner. MTT assay showed that baicalin treatment ameliorated the decrease in cell viability due to glutamate toxicity. The effect of baicalin is dose-dependent. Glutamate caused severe nerve damage, including condensation of the cell shape, loss of dendrites and axons. However, baicalin treatment attenuated these morphological changes, and the effect of baicalin was dose-dependent. ROS and LPO analyses showed that glutamate increases oxidative stress, and baicalin attenuates this change due to glutamate toxicity. The effect of baicalin on these results was dose-dependent. We confirmed that baicalin performs an antioxidant function against glutamate toxicity in neurons. In conclusion, these results suggest that baicalin exerts neuroprotective effects on damaged neurons through antioxidant activity.
Files in This Item
There are no files associated with this item.
Appears in
Collections
수의과대학 > Department of Veterinary Medicine > Journal Articles
의학계열 > 수의학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Koh, Phil Ok photo

Koh, Phil Ok
수의과대학 (수의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE