Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Metabolic Engineering of <i>Komagataella phaffii</i> for Xylose Utilization from Cellulosic Biomassopen access

Authors
Park, JongbeomPark, SujeongEvelina, GraceKim, SungheeJin, Yong-SuChi, Won-JaeKim, In JungKim, Soo Rin
Issue Date
Dec-2024
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Keywords
<italic>Komagataella phaffii</italic>; xylose metabolism; promoter library; lignocellulose; kenaf
Citation
Molecules, v.29, no.23
Indexed
SCIE
SCOPUS
Journal Title
Molecules
Volume
29
Number
23
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/75304
DOI
10.3390/molecules29235695
ISSN
1420-3049
1420-3049
Abstract
Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including Komagataella phaffii, are unable to utilize xylose effectively. To address this limitation, we engineered a K. phaffii strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the XYL1, XYL2, and XYL3 genes, resulting in a strain with a strong promoter for XYL2 and weaker promoters for XYL1 and XYL3. This engineered strain exhibited superior growth, achieving 14 g cells/L and a maximal growth rate of 0.4 g cells/L-h in kenaf hydrolysate, outperforming a native strain by 17%. This study is the first to report the introduction of the xylose oxidoreductase pathway into K. phaffii, demonstrating its potential as an industrial platform for producing yeast protein and other products from cellulosic biomass.
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 식품공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, In Jung photo

Kim, In Jung
농업생명과학대학 (식품공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE