A Functional N/S-doped Carbon Electrode from a Carbonized Bagasse Activated with Water Vapor
- Authors
- Rahmawati, Fitria; Amalia, Ainaya Febi; Ridassepri, Arikasuci Fitonna; Nakamura, Jun; Lee, Younki
- Issue Date
- Nov-2024
- Publisher
- The Korean Electrochemical Society
- Keywords
- Carbon; Biomass; bagasse; Electrode; Sodium ion battery
- Citation
- Journal of Electrochemical Science and Technology, v.15, no.4, pp 466 - 475
- Pages
- 10
- Indexed
- SCIE
SCOPUS
- Journal Title
- Journal of Electrochemical Science and Technology
- Volume
- 15
- Number
- 4
- Start Page
- 466
- End Page
- 475
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/74541
- DOI
- 10.33961/jecst.2024.00017
- ISSN
- 2093-8551
2288-9221
- Abstract
- This research used solid waste from sugarcane production, named bagasse, as raw material for a functional carbon electrode. The bagasse was carbonized to produce carbon powder and, following activation with water vapor at 700 C. The activated carbon was doped with N and S to improve its electrochemical properties by treating it with thiourea precursor and heating it at 850 C under nitrogen flow to produce N/S-doped carbon (NSCE). The produced carbon was then characterized to understand the specific diffraction pattern, molecular vibrations, and surface morphology. The result found that the NSCE showed two broad diffraction peaks at 23 and 43 , corresponding to [002] and [100] crystal planes following JCPDS75-1621. FTIR spectra showed some O-H, C-H, C-O, and C=C peaks. Peaks of C=N, C-N, and S-H demonstrate the presence of N/S within the NSCE. Raman analysis revealed that N/S doping caused structure defects within the single C6 layer networks, providing carbon vacancies (V center dot center dot center dot center dot ) because of C replacement by N ( ) and S ( ). Meanwhile, XPS analysis showed N/S introduction to the C network by revealing peaks at 168.26 eV and 169.55 eV, corresponding to S2p and S2p , and 171.95 eV corresponds to C-SO -C, indicating the presence of S within the thiol group attached to the carbon. Meanwhile, N1s are revealed at 402.4 eV and 405.5 eV, confirming pyrrolic nitrogen (N-5) and quaternary nitrogen (N-Q). The electrochemical analysis found that the reaction within the prepared-NSCE/NaClO /Na was reversible, with an onset potential of 0.1 V vs. Na/ Na , explaining the intercalation and deintercalation of sodium ions. The sodium battery full cell showed an excellent battery performance with an initial charging-discharging capacity of 720 mAh g and 570 mAh g , respectively, at 0.2C. Meanwhile, a cycling test showed the average Coulombic efficiency of 84.4% and capacity retention of 57% after 50 cycles.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.