Cited 12 time in
Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cho, Soo Been | - |
| dc.contributor.author | Soleh, Hidayat Mohamad | - |
| dc.contributor.author | Choi, Ji Won | - |
| dc.contributor.author | Hwang, Woon-Ha | - |
| dc.contributor.author | Lee, Hoonsoo | - |
| dc.contributor.author | Cho, Young-Son | - |
| dc.contributor.author | Cho, Byoung-Kwan | - |
| dc.contributor.author | Kim, Moon S. | - |
| dc.contributor.author | Baek, Insuck | - |
| dc.contributor.author | Kim, Geonwoo | - |
| dc.date.accessioned | 2024-12-03T07:00:36Z | - |
| dc.date.available | 2024-12-03T07:00:36Z | - |
| dc.date.issued | 2024-10 | - |
| dc.identifier.issn | 1424-8220 | - |
| dc.identifier.issn | 1424-8220 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/74535 | - |
| dc.description.abstract | This study systematically reviews the integration of artificial intelligence (AI) and remote sensing technologies to address the issue of crop water stress caused by rising global temperatures and climate change; in particular, it evaluates the effectiveness of various non-destructive remote sensing platforms (RGB, thermal imaging, and hyperspectral imaging) and AI techniques (machine learning, deep learning, ensemble methods, GAN, and XAI) in monitoring and predicting crop water stress. The analysis focuses on variability in precipitation due to climate change and explores how these technologies can be strategically combined under data-limited conditions to enhance agricultural productivity. Furthermore, this study is expected to contribute to improving sustainable agricultural practices and mitigating the negative impacts of climate change on crop yield and quality. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | - |
| dc.title | Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/s24196313 | - |
| dc.identifier.scopusid | 2-s2.0-85206440605 | - |
| dc.identifier.wosid | 001332763300001 | - |
| dc.identifier.bibliographicCitation | Sensors, v.24, no.19 | - |
| dc.citation.title | Sensors | - |
| dc.citation.volume | 24 | - |
| dc.citation.number | 19 | - |
| dc.type.docType | Review | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalResearchArea | Instruments & Instrumentation | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Analytical | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
| dc.relation.journalWebOfScienceCategory | Instruments & Instrumentation | - |
| dc.subject.keywordPlus | EXPLAINABLE ARTIFICIAL-INTELLIGENCE | - |
| dc.subject.keywordPlus | CANOPY TEMPERATURE | - |
| dc.subject.keywordPlus | RANDOM FOREST | - |
| dc.subject.keywordPlus | AIRBORNE IMAGERY | - |
| dc.subject.keywordPlus | IRRIGATION | - |
| dc.subject.keywordPlus | MACHINE | - |
| dc.subject.keywordPlus | YIELD | - |
| dc.subject.keywordPlus | CLASSIFICATION | - |
| dc.subject.keywordPlus | PERFORMANCE | - |
| dc.subject.keywordPlus | QUALITY | - |
| dc.subject.keywordAuthor | crops | - |
| dc.subject.keywordAuthor | water stress | - |
| dc.subject.keywordAuthor | machine learning | - |
| dc.subject.keywordAuthor | deep learning | - |
| dc.subject.keywordAuthor | artificial intelligence (AI) | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
