Detailed Information

Cited 11 time in webofscience Cited 12 time in scopus
Metadata Downloads

Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review

Full metadata record
DC Field Value Language
dc.contributor.authorCho, Soo Been-
dc.contributor.authorSoleh, Hidayat Mohamad-
dc.contributor.authorChoi, Ji Won-
dc.contributor.authorHwang, Woon-Ha-
dc.contributor.authorLee, Hoonsoo-
dc.contributor.authorCho, Young-Son-
dc.contributor.authorCho, Byoung-Kwan-
dc.contributor.authorKim, Moon S.-
dc.contributor.authorBaek, Insuck-
dc.contributor.authorKim, Geonwoo-
dc.date.accessioned2024-12-03T07:00:36Z-
dc.date.available2024-12-03T07:00:36Z-
dc.date.issued2024-10-
dc.identifier.issn1424-8220-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/74535-
dc.description.abstractThis study systematically reviews the integration of artificial intelligence (AI) and remote sensing technologies to address the issue of crop water stress caused by rising global temperatures and climate change; in particular, it evaluates the effectiveness of various non-destructive remote sensing platforms (RGB, thermal imaging, and hyperspectral imaging) and AI techniques (machine learning, deep learning, ensemble methods, GAN, and XAI) in monitoring and predicting crop water stress. The analysis focuses on variability in precipitation due to climate change and explores how these technologies can be strategically combined under data-limited conditions to enhance agricultural productivity. Furthermore, this study is expected to contribute to improving sustainable agricultural practices and mitigating the negative impacts of climate change on crop yield and quality.-
dc.language영어-
dc.language.isoENG-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titleRecent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/s24196313-
dc.identifier.scopusid2-s2.0-85206440605-
dc.identifier.wosid001332763300001-
dc.identifier.bibliographicCitationSensors, v.24, no.19-
dc.citation.titleSensors-
dc.citation.volume24-
dc.citation.number19-
dc.type.docTypeReview-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.subject.keywordPlusEXPLAINABLE ARTIFICIAL-INTELLIGENCE-
dc.subject.keywordPlusCANOPY TEMPERATURE-
dc.subject.keywordPlusRANDOM FOREST-
dc.subject.keywordPlusAIRBORNE IMAGERY-
dc.subject.keywordPlusIRRIGATION-
dc.subject.keywordPlusMACHINE-
dc.subject.keywordPlusYIELD-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusQUALITY-
dc.subject.keywordAuthorcrops-
dc.subject.keywordAuthorwater stress-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorartificial intelligence (AI)-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 생물산업기계공학과 > Journal Articles
농업생명과학대학 > 스마트농산업학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Geonwoo photo

Kim, Geonwoo
농업생명과학대학 (생물산업기계공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE