Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Reversible Li-ion trade-off in ultrathick sulfur cathodes for practical lean Li-S batteries

Authors
Senthil, ChenrayanKim, Sun-SikKim, Hee-JunJung, Hyun Young
Issue Date
Dec-2024
Publisher
Elsevier BV
Keywords
Conducting polymer; Thick sulfur cathode; Polysulfide; Lean electrolyte; Li-S battery
Citation
Nano Energy, v.131
Indexed
SCIE
SCOPUS
Journal Title
Nano Energy
Volume
131
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/74119
DOI
10.1016/j.nanoen.2024.110231
ISSN
2211-2855
2211-3282
Abstract
The use of low electrolyte volume is beneficial to improve energy density but severely limits access over obscured sulfur, along with sluggish ion kinetics and aggravated polarization, as the ion imbalance across the multicomponent interface of thick sulfur cathodes at a lean electrolyte viciously dominates the sulfur electrokinetics. Herein, we demonstrate that an ion imbalance at the interfaces of a thick electrode with a lean electrolyte can be compensated by the ion trade-off strategy utilizing a cationic ion conductive active binder. It ensures sustained lithium-ion donation/release over the vicinity of slow electrolyte percolation to realize an ion-enriched sulfur-binder-electrolyte interface. The in-situ evolved ionic interface essentially activates the inaccessible sulfur, bringing about additional capacity and low ion and charge transfer resistances. The active binder adopts sulfur cathodes housing 8.1 mg cm(-2) with an E/S ratio of 6 mu L mg(-1) electrochemically utilized 60.89 % sulfur, corresponding to a 1020 mAh g(-1) capacity. The lean Li-S pouch cell delivers an energy density of 324 Wh kg(-1), demonstrating the efficacy of ion trade-off to ease the interfacial barrier. This study would open up a new paradigm in potentially designing thick electrodes for multiple high energy density batteries.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > ETC > Journal Articles
학과간협동과정 > 에너지시스템공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jung, Hyun Young photo

Jung, Hyun Young
공과대학 (에너지공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE