Detailed Information

Cited 7 time in webofscience Cited 7 time in scopus
Metadata Downloads

Synergistic effect of oxygen vacancies and in-situ formed bismuth metal centers on BiVO4 as an enhanced bifunctional Li–O2 batteries electrocatalyst

Authors
Che Mohamad, Nur Aqlili RianaChae, KyungheeLee, HeejunKim, JeongwonMarques Mota, FilipeBang, JoonhoKim, Dong Ha
Issue Date
Jan-2025
Publisher
Academic Press
Keywords
Bismuth metal; BiVO<sub>4</sub>; Electrocatalyst; Lithium-oxygen batteries; Metal oxide; OER; ORR; Oxygen vacancies
Citation
Journal of Colloid and Interface Science, v.678, pp 119 - 129
Pages
11
Indexed
SCIE
SCOPUS
Journal Title
Journal of Colloid and Interface Science
Volume
678
Start Page
119
End Page
129
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/73776
DOI
10.1016/j.jcis.2024.08.139
ISSN
0021-9797
1095-7103
Abstract
Bismuth Vanadate (BiVO4) is a promising oxide-based photoanode for electrochemical applications, yet its practical use is constrained by poor charge transport properties, particularly under dark conditions. This study introduces a novel BiVO4 variant (Bi-BiVO4-10) that incorporates abundant oxygen vacancies and in-situ formed Bi metal, significantly enhancing its electrical conductivity and catalytic performance. Bi-BiVO4-10 demonstrates superior electrochemical performances compared to conventional BiVO4 (C-BiVO4), demonstrated by its most positive half-wave potential with the highest diffusion-limiting current in the oxygen reduction reaction (ORR) and earliest onset potential in the oxygen evolution reaction (OER). Notably, Bi-BiVO4-10 is explored for the first time as an electrocatalyst for lithium-oxygen (Li–O2) cells, showing reduced overcharge (610 mV) in the first cycle and extended cycle life (1050 h), outperforming carbon (320 h) and C-BiVO4 (450 h) references. The enhancement is attributed to the synergy of oxygen vacancies, Bi metal formation, increased surface area, and improved electrical conductivity, which collectively facilitate Li2O2 growth, enhance charge transport kinetics, and ensure stable cycling. Theoretical calculations reveal enhanced chemical interactions between intermediate molecules and the defect-rich surfaces of Bi-BiVO4-10, promoting efficient discharge and charge processes in Li–O2 batteries. This research highlights the potential of unconventional BiVO4-based materials as durable electrocatalysts and for broader electrochemical applications. © 2024
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bang, Joon Ho photo

Bang, Joon Ho
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE