Detailed Information

Cited 14 time in webofscience Cited 14 time in scopus
Metadata Downloads

Lupeol protect against LPS-induced neuroinflammation and amyloid beta in adult mouse hippocampusopen access

Authors
Choe, KyonghwanPark, Jun SungPark, Hyun YoungTahir, MuhammadPark, Tae JuKim, Myeong Ok
Issue Date
Jul-2024
Publisher
Frontiers Media SA
Keywords
Alzheimer’s disease; amyloid-beta; lipopolysaccharide; lupeol; neuroinflammation
Citation
Frontiers in Nutrition, v.11
Indexed
SCIE
SCOPUS
Journal Title
Frontiers in Nutrition
Volume
11
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/72438
DOI
10.3389/fnut.2024.1414696
ISSN
2296-861X
Abstract
Neuroinflammation includes the activation of immune glial cells in the central nervous system, release pro-inflammatory cytokines, which disrupt normal neural function and contribute to various neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease, multiple sclerosis, and stroke. AD is characterized by various factors including amyloidogenesis, synaptic dysfunction, memory impairment and neuroinflammation. Lipopolysaccharide (LPS) constitutes a vital element of membrane of the gram-negative bacterial cell, triggering vigorous neuroinflammation and facilitating neurodegeneration. Lupeol, a naturally occurring pentacyclic triterpene, has demonstrated several pharmacological properties, notably its anti-inflammatory activity. In this study, we evaluated the anti-inflammatory and anti-Alzheimer activity of lupeol in lipopolysaccharide (LPS)-injected mice model. LPS (250ug/kg) was administered intraperitoneally to C57BL/6 N male mice for 1 week to induce neuroinflammation and cognitive impairment. For biochemical analysis, acetylcholinesterase (AChE) assay, western blotting and confocal microscopy were performed. AChE, western blot and immunofluorescence results showed that lupeol treatment (50 mg/kg) along with LPS administration significantly inhibited the LPS-induced activation of neuroinflammatory mediators and cytokines like nuclear factor (NF-κB), tumor necrosis factor (TNF-α), cyclooxygenase (COX-2) and interleukin (IL-1β). Furthermore, we found that LPS-induced systemic inflammation lead to Alzheimer’s symptoms as LPS treatment enhances level of amyloid beta (Aβ), amyloid precursor protein (APP), Beta-site APP cleaving enzyme (BACE-1) and hyperphosphorylated Tau (p-Tau). Lupeol treatment reversed the LPS-induced elevated level of Aβ, APP, BACE-1 and p-Tau in the hippocampus, showing anti-Alzheimer’s properties. It is also determined that lupeol prevented LPS-induced synaptic dysfunction via enhanced expression of pre-and post-synaptic markers like SNAP-23, synaptophysin and PSD-95. Overall, our study shows that lupeol prevents memory impairment and synaptic dysfunction via inhibition of neuroinflammatory processes. Hence, we suggest that lupeol might be a useful therapeutic agent in prevention of neuroinflammation-induced neurological disorders like AD. Copyright © 2024 Choe, Park, Park, Tahir, Park and Kim.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Myeong Ok photo

Kim, Myeong Ok
대학원 (응용생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE