Electrochemical strategies for urea synthesis <i>via</i> C-N coupling of integrated carbon oxide-nitrogenous molecule reduction
- Authors
- Theerthagiri, Jayaraman; Karuppasamy, K.; Maia, Gilberto; Kumari, M. L. Aruna; Min, Ahreum; Moon, Cheol Joo; Souza, Marcielli K. R.; Vadivel, Neshanth; Murthy, Arun Prasad; Kheawhom, Soorathep; Alfantazi, Akram; Choi, Myong Yong
- Issue Date
- Aug-2024
- Publisher
- Royal Society of Chemistry
- Citation
- Journal of Materials Chemistry A, v.12, no.32, pp 20691 - 20716
- Pages
- 26
- Indexed
- SCIE
SCOPUS
- Journal Title
- Journal of Materials Chemistry A
- Volume
- 12
- Number
- 32
- Start Page
- 20691
- End Page
- 20716
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/71808
- DOI
- 10.1039/d4ta02891k
- ISSN
- 2050-7488
2050-7496
- Abstract
- The electrochemical coupling of C and N has sparked considerable research attention, heralded as a capable method to curb carbon and nitrogen emissions while concurrently storing surplus renewable electricity in valuable chemical compounds such as urea, amides, and amines. Electrocatalytic urea synthesis via a C-N coupling reaction (CNCR) comprises the electroreduction of CO2 alongside the coreduction of various inorganic nitrogen sources (NO3-, NO2-, N-2, and NO). However, the main hurdles for this electrochemical C-N coupling are the inert nature of the involved molecules and the prevalence of competing side reactions. This review comprehensively examines recent advancements in electrocatalytic C-N coupling, emphasizing the various mechanistic pathways involved in urea production, including the CO2 reduction and NO3 reduction reaction. Additionally, electrochemical key performance parameters and future advancement directions for electrocatalytic urea production are discussed. The electrochemical CNCR accomplishes effective resource use and delivers direction and reference for molecular coupling reactions. The insights gleaned from these observations may illuminate the development of effective catalysts in forthcoming research and expand the potential applications in green urea production.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 자연과학대학 > 화학과 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.