Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

BIM 모델 활용을 위한 360° 카메라 이미지의 객체 탐지 알고리즘 정확성 비교 연구A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization

Other Titles
A Study on the Accuracy Comparison of Object Detection Algorithms for 360° Camera Images for BIM Model Utilization
Authors
주현철이주형임종원이재희강인석
Issue Date
Sep-2023
Keywords
360° Camera; SSD; YOLO; R-CNN; Tunnel; 360° 카메라; SSD; YOLO; R-CNN; 터널
Citation
토지주택연구, v.14, no.3, pp 145 - 155
Pages
11
Indexed
KCI
Journal Title
토지주택연구
Volume
14
Number
3
Start Page
145
End Page
155
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/71662
DOI
10.5804/LHIJ.2023.14.3.145
ISSN
2093-8829
Abstract
최근 건설산업 분야에 BIM 기술의 활용이 보편화되면서 3D 모델과 실제 시공 부위의 오류 확인 등을 위해 다양한 객체 탐지 알고리즘들이 활용되고 있다. 객체 탐지 기술은 건축물, 교량, 터널 등 건설시설물의 종류에 따라 객체 특성이 상이하므로 객체 탐지 기술도 적절한 방법을 사용할 필요가 있다. 또한 객체 탐지를 위해서는 초기 객체 이미지가 있어야 하며 이를 위해서도 드론, 스마트폰 등 다양한 방법으로 이미지 취득이 가능하다. 본 연구에서는 철도와 도로 시설의 터널 부위에 대하여 초기 이미지 구축을 위해 터널 내부 촬영에 최적화된 360° 카메라를 이용하여 이미지를 촬영하고, 촬영된 이미지로부터 실제 객체를 탐지하기 위한 객체 탐지 방법론으로 YOLO 알고리즘, SSD 알고리즘 및 R-CNN 알고리즘을 적용하여 방법론별 객체 탐지의 정확도를 비교 분석한다. 분석 결과 Faster R-CNN 알고리즘이 SSD, YOLO v5 알고리즘에 비해 높은 인식률 및 mAP 값을 가졌으며 인식률들의 최소·최대 값의 차이가 작아 균등한 검측 능력을 나타냈다. 이러한 연구는 철도와 도로 시설공사에 BIM 적용이 확산되고 있는 점을 고려하면 360° 카메라의 활용 방법 확대와 유지보수를 위한 터널 시설 부위의 객체 탐지 방법론 적용에 활용될 수 있다.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 토목공학과 > Journal Articles
공과대학 > Department of Civil Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Leen Seok photo

Kang, Leen Seok
공과대학 (토목공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE