Precision Genome Engineering for the Breeding of Tomatoes: Recent Progress and Future Perspectivesopen access
- Authors
- Vu, Tien Van; Das, Swati; Tran, Mil Thi; Hong, Jong Chan; Kim, Jae-Yean
- Issue Date
- Dec-2020
- Publisher
- Frontiers Media S.A.
- Keywords
- CRISPR/Cas; gene editing; precision genome engineering; tomato breeding; precision breeding; new plant breeding techniques
- Citation
- Frontiers in Genome Editing, v.2
- Indexed
- SCOPUS
- Journal Title
- Frontiers in Genome Editing
- Volume
- 2
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/71518
- DOI
- 10.3389/fgeed.2020.612137
- ISSN
- 2673-3439
- Abstract
- Currently, poor biodiversity has raised challenges in the breeding and cultivation of tomatoes, which originated from the Andean region of Central America, under global climate change. Meanwhile, the wild relatives of cultivated tomatoes possess a rich source of genetic diversity but have not been extensively used for the genetic improvement of cultivated tomatoes due to the possible linkage drag of unwanted traits from their genetic backgrounds. With the advent of new plant breeding techniques (NPBTs), especially CRISPR/Cas-based genome engineering tools, the high-precision molecular breeding of tomato has become possible. Further, accelerated introgression or de novo domestication of novel and elite traits from/to the wild tomato relatives to/from the cultivated tomatoes, respectively, has emerged and has been enhanced with high-precision tools. In this review, we summarize recent progress in tomato precision genome editing and its applications for breeding, with a special focus on CRISPR/Cas-based approaches. Future insights and precision tomato breeding scenarios in the CRISPR/Cas era are also discussed.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - ETC > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.