Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

Autoencoder-based composite drought indicesopen access

Authors
Lee, TaesamKong, YejinSingh, VijayLee, Joo-Heon
Issue Date
Jul-2024
Publisher
Institute of Physics
Keywords
agricultural drought; autoencoder; composition; drought index; reservoir; SPI
Citation
Environmental Research Letters, v.19, no.7
Indexed
SCIE
SCOPUS
Journal Title
Environmental Research Letters
Volume
19
Number
7
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/70883
DOI
10.1088/1748-9326/ad4e4f
ISSN
1748-9326
Abstract
Depending on the type, drought events are described using different indices, such as meteorological, agricultural, and hydrological. The use of different indices often causes confusion for making water-related management decisions. One simple summarized index which can describe the different aspects of drought is desired. Several methods have therefore been proposed, especially with the linear combination method which does not adequately describe drought characteristics. Meanwhile, autoencoders, nonlinear transformation in dimensional reduction, have been applied in the deep learning literature. The objective of this study, therefore, was to derive autoencoder-based composite drought indices (ACDIs). First, a basic autoencoder was directly applied as ACDI, illustrating a negative relation with the observed drought indices which was further multiplied by a negative. Also, the hyperbolic tangent function was adopted instead of the sigmoid transfer function due to its higher sensitivity to drought conditions. For better expression of drought indices, positive and unity constraints were applied for weights, denoted as ACDI-C. Further simplification was made as sACDI by excluding the decoding module since it was not necessary. All applied weights of different sites over a country can be unified into one weight, and the same weights were made for all the sites, called as sACDI1. In the context of model evaluation, a comprehensive analysis was undertaken employing metrics as root mean squared error (RMSE), mean absolute error (MAE), and correlation coefficients. The collective findings underscore the superior performance of both the sACDI and sACDI1 models over their counterparts. Notably, these simplified models manifestly diminished RMSE and MAE values, indicating their enhanced predictive capabilities. Of particular note, sACDI1 exhibited a discernibly lower MAE in comparison to alternative models. Further alarm performance metrics was conducted including the false alarm ratio, probability of detection, and accuracy (ACC). The investigations revealed superiority of the simplified models in terms of alarm ACC, especially in the case of SRSI(A). The developed ACDI can comprehensively summarize multiple drought aspects and provide summarized information about drought conditions. © 2024 The Author(s). Published by IOP Publishing Ltd
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 토목공학과 > Journal Articles
공과대학 > Department of Civil Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Tae Sam photo

Lee, Tae Sam
공과대학 (토목공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE