Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Systematic determination of the optimized Zr content of Ba(Zr<sub>x</sub>Ti<sub>1-x</sub>)O<sub>3</sub> with high dielectric constant at room temperature for high-voltage system applicationopen access

Authors
Kim, JandiSeo, Ji HyeLee, Sang HeunCho, MyungheeKwak, HunCheon, Ran SaeCho, SeungchanCho, Sung BeomKim, MinkeeLee, Yoon-SeokKim, YangdoChoi, Moonhee
Issue Date
May-2024
Publisher
SPRINGER HEIDELBERG
Keywords
Dielectric; MLCC; Barium zirconate titanate; Solid-state reaction
Citation
JOURNAL OF THE KOREAN CERAMIC SOCIETY, v.61, no.3, pp 391 - 401
Pages
11
Indexed
SCIE
SCOPUS
KCI
Journal Title
JOURNAL OF THE KOREAN CERAMIC SOCIETY
Volume
61
Number
3
Start Page
391
End Page
401
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/69433
DOI
10.1007/s43207-023-00353-x
ISSN
1229-7801
2234-0491
Abstract
In this study, by replacing the B-site element in BaTiO3, a ferroelectric material, with an element with a larger ionic radius, a ferroelectric material with high permittivity at room temperature was synthesized. The powders were prepared by solid-state reaction to perform lattice substitution with Zr4+ (0.72 & Aring;), which has a larger ionic radius than Ti4+ (0.605 & Aring;). To perform effective solid-state reaction and better understand the correlation between variables, this study introduced a design of experiment (DOE) based on the orthogonal array (OA) method included in the PIAno software. By substituting 0.222 mol of Zr, which has a large ionic radius, the crystal structure was deformed through an effective diffuse phase transition (DPT), and this resulted in the largest improvement in permittivity at room temperature. In addition, the powder, which underwent solid-state reaction at 1300 degrees C, formed the densest structure during sintering, which established the conditions for realizing the best dielectric properties. These results can be utilized as a key material for improving the properties of passive devices used in high-voltage industrial systems in societies undergoing the fourth industrial revolution.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE