Detailed Information

Cited 22 time in webofscience Cited 26 time in scopus
Metadata Downloads

Evaluating the Impact of Climate Change on Paddy Water Balance Using APEX-Paddy Modelopen access

Authors
Kamruzzaman, MohammadHwang, SyewoonChoi, Soon-KunCho, JaepilSong, InhongSong, Jung-hunJeong, HanseokJang, TaeilYoo, Seung-Hwan
Issue Date
Mar-2020
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Keywords
water balance; paddy field; APEX-Paddy model; climate change; irrigation water demand
Citation
Water (Switzerland), v.12, no.3
Indexed
SCIE
SCOPUS
Journal Title
Water (Switzerland)
Volume
12
Number
3
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/6894
DOI
10.3390/w12030852
ISSN
2073-4441
Abstract
This research aims to assess the impact of climate change on water balance components in irrigated paddy cultivation. The APEX-Paddy model, which is the modified version of the APEX (Agricultural Policy/Environmental eXtender) model for paddy ecosystems, was used to evaluate the paddy water balance components considering future climate scenarios. The bias-corrected future projections of climate data from 29 GCMs (General Circulation Models) were applied to the APEX-Paddy model simulation. The study area (Jeonju station) forecasts generally show increasing patterns in rainfall, maximum temperature, and minimum temperature with a rate of up to 23%, 27%, and 45%, respectively. The hydrological simulations suggest over-proportional runoff-rainfall and under-proportional percolation and deep-percolation-rainfall relationships for the modeled climate scenarios. Climate change scenarios showed that the evapotranspiration amount was estimated to decrease compared to the baseline period (1976-2005). The evaporation was likely to increase by 0.12%, 2.21%, and 7.81% during the 2010s, 2040s, and 2070s, respectively under Representative Concentration Pathway (RCP)8.5, due to the increase in temperature. The change in evaporation was more pronounced in RCP8.5 than the RCP4.5 scenario. The transpiration is expected to reduce by 2.30% and 12.62% by the end of the century (the 2070s) under RCP4.5 and RCP8.5, respectively, due to increased CO2 concentration. The irrigation water demand is generally expected to increase over time in the future under both climate scenarios. Compared to the baseline, the most significant change is expected to increase in the 2040s by 3.21% under RCP8.5, while the lowest increase was found by 0.36% in 2010s under RCP4.5. The increment of irrigation does not show a significant difference; the rate of increase in the irrigation was found to be greater RCP8.5 than RCP4.5 except in the 2070s. The findings of this study can play a significant role as the basis for evaluating the vulnerability of rice production concerning water management against climate change.
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > Department of Agricultural Engineering, GNU > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Sye Woon photo

Hwang, Sye Woon
농업생명과학대학 (지역시스템공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE