Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

비정형 기둥 형상을 가진 나노구조에서의 가스 투과성 실험 연구Permeability of the Lateral Air Flow through UnstructuredPillar-like Nanostructures

Other Titles
Permeability of the Lateral Air Flow through UnstructuredPillar-like Nanostructures
Authors
김혜원임혜원박정우이상민김형모
Issue Date
Oct-2023
Publisher
한국트라이볼로지학회
Keywords
기체 제거; 가스 투과성; 비정형 나노구조물; 금속을 촉매로 한 화학적 식각 방법; Degassing; Gas permeability; Unstructure nanostructures; Metal assisted chemical etching
Citation
한국트라이볼로지학회지, v.39, no.5, pp 197 - 202
Pages
6
Indexed
KCI
Journal Title
한국트라이볼로지학회지
Volume
39
Number
5
Start Page
197
End Page
202
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/68916
ISSN
2713-8011
Abstract
Recently, research on experimental and analytical techniques utilizing microfluidic devices has been pursued. For example, lab-on-a-chip devices that integrate micro-devices onto a single chip for processing small sample quantities have gained significant attention. However, during sample preparation, unnecessary gases can be introduced into the internal channels, thus, impeding device flow and compromising specific function efficiency, including that of analysis and separation. Several methods have been proposed to mitigate this issue, however, many involve cumbersome procedures or suffer from complexities owing to intricate structures. Recently, some approaches have been introduced that utilize hydrophobic device structures to remove gases within channels. In such cases, the permeability of gases passing through the structure becomes a crucial performance factor. In this study, a method involving the deposition and sintering of diluted Ag-ink onto a silicon wafer surface is presented. This is followed by unstructured nano-pattern creation using a Metal Assisted Chemical Etching (MACE) process, which yields a nanostructured surface with unstructured pillar shapes. Subsequently, gas permeability in the spaces formed by these surface structures is investigated. This is achieved by experiments conducted to incorporate a pressure chamber and measure gas permeability. Trends are subsequently analyzed by comparing the results with existing theories. Finally, it can be confirmed that the significance of this study primarily lies in its capability to effectively evaluate gas permeability through unstructured pillar-like nanostructures, thus, providing quantitative values for the appropriate driving pressure and expected gas removal time in practical device operation.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyung Mo photo

Kim, Hyung Mo
대학원 (기계항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE