Detailed Information

Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

Projective and Non-Projective Varieties of Topological Decomposition of Groups with Embeddingsopen access

Authors
Bagchi, Susmit
Issue Date
Mar-2020
Publisher
MDPI
Keywords
topology; symmetry; group decomposition; Schoenflies embeddings; projection; homeomorphism
Citation
SYMMETRY-BASEL, v.12, no.3
Indexed
SCIE
SCOPUS
Journal Title
SYMMETRY-BASEL
Volume
12
Number
3
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/6887
DOI
10.3390/sym12030450
ISSN
2073-8994
Abstract
In general, the group decompositions are formulated by employing automorphisms and semidirect products to determine continuity and compactification properties. This paper proposes a set of constructions of novel topological decompositions of groups and analyzes the behaviour of group actions under the topological decompositions. The proposed topological decompositions arise in two varieties, such as decomposition based on topological fibers without projections and decomposition in the presence of translated projections in topological spaces. The first variety of decomposition introduces the concepts of topological fibers, locality of group operation and the partitioned local homeomorphism resulting in formulation of transitions and symmetric surjection within the topologically decomposed groups. The reformation of kernel under decomposed homeomorphism and the stability of group action with the existence of a fixed point are analyzed. The first variety of decomposition does not require commutativity maintaining generality. The second variety of projective topological decomposition is formulated considering commutative as well as noncommutative projections in spaces. The effects of finite translations of topologically decomposed groups under projections are analyzed. Moreover, the embedding of a decomposed group in normal topological spaces is formulated in this paper. It is shown that Schoenflies homeomorphic embeddings preserve group homeomorphism in the decomposed embeddings within normal topological spaces. This paper illustrates that decomposed group embedding in normal topological spaces is separable. The applications aspects as well as parametric comparison of group decompositions based on topology, direct product and semidirect product are included in the paper.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > Department of Aerospace and Software Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bagchi, Susmit photo

Bagchi, Susmit
공과대학 (항공우주및소프트웨어공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE