Detailed Information

Cited 13 time in webofscience Cited 15 time in scopus
Metadata Downloads

Self-assembled vapor-transport-deposited SnS nanoflake-based memory devices with synaptic learning properties

Full metadata record
DC Field Value Language
dc.contributor.authorKhot, Atul C.-
dc.contributor.authorPawar, Pravin S.-
dc.contributor.authorDongale, Tukaram D.-
dc.contributor.authorNirmal, Kiran A.-
dc.contributor.authorSutar, Santosh S.-
dc.contributor.authorDeepthi Jayan, K.-
dc.contributor.authorMullani, Navaj B.-
dc.contributor.authorKumbhar, Dhananjay D.-
dc.contributor.authorKim, Yong Tae-
dc.contributor.authorPark, Jun Hong-
dc.contributor.authorHeo, Jaeyeong-
dc.contributor.authorKim, Tae Geun-
dc.date.accessioned2023-12-18T02:00:36Z-
dc.date.available2023-12-18T02:00:36Z-
dc.date.issued2024-03-
dc.identifier.issn0169-4332-
dc.identifier.issn1873-5584-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/68808-
dc.description.abstractThe most salient features of resistive switching (RS) devices are low energy consumption, fast switching speed, and high-density integration, which render them promising candidates for realizing non-volatile memory and artificial synaptic devices. However, the growth of functional switching layers for RS devices needs innovative deposition techniques. Herein, we utilize a high-throughput vapor-transport-deposition (VTD) technique for synthesizing self-assembled tin-sulfide (SnS) nanoflakes, which are then used as a switching layer to fabricate an RS device. First principle calculations are conducted to understand the optoelectronic properties of SnS by employing density functional theory. The proposed Ag/SnS/Pt memory device exhibits substantial merits, including low-switching voltages (VSET: 0.22 V and VRESET: −0.20 V), suitable ON/OFF ratio (∼259), excellent endurance (106), and extended memory retention (106 s) characteristics. In addition, RS stochasticity is modeled using statistical time-series analysis via Holt's exponential smoothing. Interestingly, the device can emulate multiple synaptic functionalities, including potentiation, depression, paired-pulse facilitation, paired-pulse depression, excitatory postsynaptic current, inhibitory postsynaptic current, and advanced spike-timing dependent plasticity rules. Moreover, the proposed synaptic device can detect the edge of images by utilizing a convolutional neural network. The unique and efficient VTD-SnS-based device will be a potential candidate for high-density non-volatile memory and neuromorphic computing applications. © 2023 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleSelf-assembled vapor-transport-deposited SnS nanoflake-based memory devices with synaptic learning properties-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.apsusc.2023.158994-
dc.identifier.scopusid2-s2.0-85178092022-
dc.identifier.wosid001128127200001-
dc.identifier.bibliographicCitationApplied Surface Science, v.648-
dc.citation.titleApplied Surface Science-
dc.citation.volume648-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusTIN MONOSULFIDE-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusMEMRISTOR-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorDensity functional theory-
dc.subject.keywordAuthorResistive switching-
dc.subject.keywordAuthorSynaptic learning-
dc.subject.keywordAuthorTime-series analysis-
dc.subject.keywordAuthorVapor-transport-deposited tin-sulfide-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jun Hong photo

Park, Jun Hong
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE