Detailed Information

Cited 4 time in webofscience Cited 9 time in scopus
Metadata Downloads

Preparation of high-purity nickel by floating zone refining under a hydrogen atmosphere

Authors
Wang, YuboJin, QinglinDuan, XiaoyuChen, YuchongLi, ZaijiuWen, MingLim, Sugun
Issue Date
Nov-2023
Publisher
Pergamon Press Ltd.
Keywords
Bubbles; Floating zone refining; Hydrogen atmosphere; Nickel; Removal rate
Citation
Vacuum, v.217
Indexed
SCIE
SCOPUS
Journal Title
Vacuum
Volume
217
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/67940
DOI
10.1016/j.vacuum.2023.112557
ISSN
0042-207X
1879-2715
Abstract
This study focuses on preparing high-purity nickel using floating zone refining under hydrogen atmosphere to overcome challenges related to impurity removal. The utilized high-vacuum floating zone refining device minimizes contamination and external impurities. The purification process's effectiveness is particularly notable for gaseous impurities, such as carbon and oxygen, with removal rates reaching 94.5% and 96.3%, respectively. The purification mechanism of the melt is considered as involving the nucleation and growth of hydrogen bubbles in the molten zone, and the adsorption of impurities on the bubble surface, followed by the ascent and overflow of bubbles, which effectively carry impurities out of the molten zone. © 2023 Elsevier Ltd
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lim, Sugun photo

Lim, Sugun
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE