Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Understanding ZIF particle chemical etching dynamics and morphology manipulation: in situ liquid phase electron microscopy and 3D electron tomography application

Authors
Chang, QiangYang, DahaiZhang, XingyuOu, ZihaoKim, JuyeongLiang, TongChen, JunhaoCheng, ShengCheng, LixunGe, BinghuiAng, Edison HuixiangXiang, HongfaLi, MufanSong, Xiaohui
Issue Date
Aug-2023
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE
Indexed
SCIE
SCOPUS
Journal Title
NANOSCALE
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/67634
DOI
10.1039/d3nr02357e
ISSN
2040-3364
Abstract
In situ liquid phase transmission electron microscopy (TEM) and three-dimensional electron tomography are powerful tools for investigating the growth mechanism of MOFs and understanding the factors that influence their particle morphology. However, their combined application to the study of MOF etching dynamics is limited due to the challenges of the technique such as sample preparation, limited field of view, low electron density, and data analysis complexity. In this research, we present a study employing in situ liquid phase TEM to investigate the etching mechanism of colloidal zeolitic imidazolate framework (ZIF) nanoparticles. The etching process involves two distinct stages, resulting in the development of porous structures as well as partially and fully hollow morphologies. The etching process is induced by exposure to an acid solution, and both in situ and ex situ experiments demonstrate that the outer layer etches faster leading to overall volume shrinking (stage I) while the inner layer etches faster giving a hollow morphology (stage II), although both the outer layer and inner layer have been etched in the whole process. 3D electron tomography was used to quantify the properties of the hollow structures which show that the ZIF-67 crystal etching rate is larger than that of the ZIF-8 crystal at the same pH value. This study provides valuable insights into MOF particle morphology control and can lead to the development of novel MOF-based materials with tailored properties for various applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 화학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Ju Yeong photo

Kim, Ju Yeong
자연과학대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE