Detailed Information

Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

Mechanistic Action of Cell Cycle Arrest and Intrinsic Apoptosis via Inhibiting Akt/mTOR and Activation of p38-MAPK Signaling Pathways in Hep3B Liver Cancer Cells by Prunetrin—A Flavonoid with Therapeutic Potentialopen access

Authors
Abusaliya, AbuyaseerJeong, Se HyoBhosale, Pritam BhagwanKim, Hun HwanPark, Min YeongKim, EunhyeWon, Chung KilPark, Kwang IlHeo, Jeong DooKim, Hyun WookAhn, MeejungSeong, Je KyungKim, Gon Sup
Issue Date
Aug-2023
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Keywords
apoptosis; cell cycle arrest; flavonoids; Hep3B cells; liver cancer
Citation
Nutrients, v.15, no.15
Indexed
SCIE
SCOPUS
Journal Title
Nutrients
Volume
15
Number
15
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/67600
DOI
10.3390/nu15153407
ISSN
2072-6643
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis and a low survival rate. Drugs without side effects are desperately needed since chemotherapy has a negative effect on the host cells. Previous research has firmly established that plant-based compounds have significant bioactivities without a negative impact on the host. Flavonoids, in particular, are a class of compounds with both anti-inflammatory and anti-cancer properties. Prunetrin (PUR) is a glycosyloxyisoflavone (Prunetin 4′-O-glucoside) derived from Prunus sp., and its other form, called prunetin, showed optimistic results in an anti-cancerous study. Hence, we aimed to discover the anti-cancer ability of prunetrin in liver cancer Hep3B cells. Our cytotoxicity results showed that PUR can decrease cell viability. The colony formation assay confirms this strongly and correlates with cell cytotoxicity results. Prunetrin, in a dose-dependent manner, arrested the cell cycle in the G2/M phase and decreased the expression of cyclin proteins such as Cyclin B1, CDK1/CDC2, and CDC25c. Prunetrin treatment also promoted the strong cleavage of two important apoptotic hallmark proteins called PARP and caspase-3. It also confirms that apoptosis occurs through the mitochondrial pathway through increased expression of cleaved caspase-9 and increased levels of the pro-apoptotic protein Bak. Bak was significantly increased with the declining expression of the anti-apoptotic protein Bcl-xL. Next, it inhibits the mTOR/AKT signaling pathways, proving that prunetrin includes apoptosis and decreases cell viability by suppressing these pathways. Further, it was also observed that the activation of p38-MAPK was dose-dependent. Taken together, they provide evidence that prunetrin has an anti-cancerous ability in Hep3B liver cancer cells by arresting the cell cycle via p38 and inhibiting mTOR/AKT. © 2023 by the authors.
Files in This Item
There are no files associated with this item.
Appears in
Collections
수의과대학 > Department of Veterinary Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Kwang Il photo

Park, Kwang Il
수의과대학 (수의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE