Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Frictional melting mechanisms of rocks during earthquake fault slipopen access

Authors
Woo, SangwooHan, RaeheeOohashi, Kiyokazu
Issue Date
Aug-2023
Publisher
Nature Research
Citation
Scientific Reports, v.13, no.1
Indexed
SCIE
SCOPUS
Journal Title
Scientific Reports
Volume
13
Number
1
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/67594
DOI
10.1038/s41598-023-39752-9
ISSN
2045-2322
Abstract
Rapid slip, at rates in the order of 1 m/s or more, may induce frictional melting in rocks during earthquakes. The short-lived melting has been thought to be a disequilibrium process, for decades. We conducted frictional melting experiments on acidic, basic, and ultrabasic silicate rocks at a slip rate of 1.3 m/s. The experiments and microstructural observations reveal that all minerals in the rocks are melted at temperatures below their known melting temperatures (Tm); e.g., quartz is melted at ~ 1000–1200 °C, not ~ 1720 °C, while olivine at ~ 1300 °C, rather than ~ 1700 °C. The low-temperature melting is incompatible with the conventional disequilibrium melting, and may be caused predominantly by grain size reduction and phase boundary reactions during the early and later stages of slip, respectively. The newly estimated Tm and the melting mechanisms should be considered for understanding the mechanics of earthquakes, landslides, and caldera collapses. © 2023, The Author(s).
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 지질과학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Han, Raehee photo

Han, Raehee
자연과학대학 (지질과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE