Detailed Information

Cited 13 time in webofscience Cited 16 time in scopus
Metadata Downloads

Polyphenols Extracted from Artemisia annua L. Exhibit Anti-Cancer Effects on Radio-Resistant MDA-MB-231 Human Breast Cancer Cells by Suppressing Stem Cell Phenotype, beta-Catenin, and MMP-9open access

Authors
Ko, Young ShinJung, Eun JooGo, Se-ilJeong, Bae KwonKim, Gon SupJung, Jin-MyungHong, Soon ChanKim, Choong WonKim, Hye JungLee, Won Sup
Issue Date
2-Apr-2020
Publisher
MDPI
Keywords
breast cancer cells; polyphenols; Artemisia annua L.; stem cells; EMT
Citation
MOLECULES, v.25, no.8
Indexed
SCIE
SCOPUS
Journal Title
MOLECULES
Volume
25
Number
8
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/6728
DOI
10.3390/molecules25081916
ISSN
1420-3049
Abstract
Artemisia annua L. has been reported to show anti-cancer activities. Here, we determined whether polyphenols extracted from Artemisia annua L. (pKAL) exhibit anti-cancer effects on radio-resistant MDA-MB-231 human breast cancer cells (RT-R-MDA-MB-231 cells), and further explored their molecular mechanisms. Cell viability assay and colony-forming assay revealed that pKAL inhibited cell proliferation on both parental and RT-R-MDA-MB-231 cells in a dose-dependent manner. The anti-proliferative effects of pKAL on RT-R-MDA-MB-231 cells were superior or similar to those on parental ones. Western blot analysis revealed that expressions of cluster of differentiation 44 (CD44) and Oct 3/4, matrix metalloproteinase-9 (MMP-9) and signal transducer and activator of transcription-3 (STAT-3) phosphorylation were significantly increased in RT-R-MDA-MB-231 cells compared to parental ones, suggesting that these proteins could be associated with RT resistance. pKAL inhibited the expression of CD44 and Oct 3/4 (CSC markers), and beta-catenin and MMP-9 as well as STAT-3 phosphorylation of RT-R-MDA-MB-231. Regarding upstream signaling, the JNK or JAK2 inhibitor could inhibit STAT-3 activation in RT-R-MDA-MB-231 cells, but not augmented pKAL-induced anti-cancer effects. These findings suggest that c-Jun N-terminal kinase (JNK) or Janus kinase 2 (JAK2)/STAT3 signaling are not closely related to the anti-cancer effects of pKAL. In conclusion, this study suggests that pKAL exhibit anti-cancer effects on RT-R-MDA-MB-231 cells by suppressing CD44 and Oct 3/4, beta-catenin and MMP-9, which appeared to be linked to RT resistance of RT-R-MDA-MB-231 cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
수의과대학 > Department of Veterinary Medicine > Journal Articles
College of Medicine > Department of Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Gon Sup photo

Kim, Gon Sup
수의과대학 (수의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE