Computational simulations of near-continuum gas flow using Navier-Stokes-Fourier equations with slip and jump conditions based on the modal discontinuous Galerkin methodopen access
- Authors
- Chourushi, T.; Rahimi, A.; Singh, S.; Myong, R. S.
- Issue Date
- 21-Apr-2020
- Publisher
- SPRINGERNATURE
- Keywords
- Near-continuum flow; Discontinuous Galerkin method; Slip and jump conditions
- Citation
- ADVANCES IN AERODYNAMICS, v.2, no.1
- Indexed
- SCOPUS
- Journal Title
- ADVANCES IN AERODYNAMICS
- Volume
- 2
- Number
- 1
- URI
- https://scholarworks.bwise.kr/gnu/handle/sw.gnu/6709
- DOI
- 10.1186/s42774-020-00032-z
- ISSN
- 2524-6992
- Abstract
- Blunt-body configurations are the most common geometries adopted for non-lifting re-entry vehicles. Hypersonic re-entry vehicles experience different flow regimes during flight due to drastic changes in atmospheric density. The conventional Navier-Stokes-Fourier equations with no-slip and no-jump boundary conditions may not provide accurate information regarding the aerothermodynamic properties of blunt-bodies in flow regimes away from the continuum. In addition, direct simulation Monte Carlo method requires significant computational resources to analyze the near-continuum flow regime. To overcome these shortcomings, the Navier-Stokes-Fourier equations with slip and jump conditions were numerically solved. A mixed-type modal discontinuous Galerkin method was employed to achieve the appropriate numerical accuracy. The computational simulations were conducted for different blunt-body configurations with varying freestream Mach and Knudsen numbers. The results show that the drag coefficient decreases with an increased Mach number, while the heat flux coefficient increases. On the other hand, both the drag and heat flux coefficients increase with a larger Knudsen number. Moreover, for an Apollo-like blunt-body configuration, as the flow enters into non-continuum regimes, there are considerable losses in the lift-to-drag ratio and stability.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공학계열 > Division of Mechanical and Aerospace Engineering > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.