Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Analysis of Homotopy Decomposition Varieties in Quotient Topological Spacesopen access

Authors
Bagchi, Susmit
Issue Date
Jun-2020
Publisher
MDPI
Keywords
topological spaces; quotient topology; fundamental groups; homotopy; embeddings
Citation
SYMMETRY-BASEL, v.12, no.6
Indexed
SCIE
SCOPUS
Journal Title
SYMMETRY-BASEL
Volume
12
Number
6
URI
https://scholarworks.bwise.kr/gnu/handle/sw.gnu/6565
DOI
10.3390/sym12061039
ISSN
2073-8994
Abstract
The fundamental groups and homotopy decompositions of algebraic topology have applications in systems involving symmetry breaking with topological excitations. The main aim of this paper is to analyze the properties of homotopy decompositions in quotient topological spaces depending on the connectedness of the space and the fundamental groups. This paper presents constructions and analysis of two varieties of homotopy decompositions depending on the variations in topological connectedness of decomposed subspaces. The proposed homotopy decomposition considers connected fundamental groups, where the homotopy equivalences are relaxed and the homeomorphisms between the fundamental groups are maintained. It is considered that one fundamental group is strictly homotopy equivalent to a set of 1-spheres on a plane and as a result it is homotopy rigid. The other fundamental group is topologically homeomorphic to the first one within the connected space and it is not homotopy rigid. The homotopy decompositions are analyzed in quotient topological spaces, where the base space and the quotient space are separable topological spaces. In specific cases, the decomposed quotient space symmetrically extends Sierpinski space with respect to origin. The connectedness of fundamental groups in the topological space is maintained by open curve embeddings without enforcing the conditions of homotopy classes on it. The extended decomposed quotient topological space preserves the trivial group structure of Sierpinski space.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > Department of Aerospace and Software Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Bagchi, Susmit photo

Bagchi, Susmit
공과대학 (항공우주및소프트웨어공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE