Predictive Control Using Active Aerodynamic Surfaces to Improve Ride Quality of a Vehicleopen access
- Authors
- Ahmad, Ejaz; Iqbal, Jamshed; Khan, Muhammad Arshad; Liang, Wu; Youn, Iljoong
- Issue Date
- Sep-2020
- Publisher
- MDPI
- Keywords
- predictive control; ride comfort; half-car model; tracking controller; aerodynamics; PS; road-holding
- Citation
- ELECTRONICS, v.9, no.9, pp 1 - 21
- Pages
- 21
- Indexed
- SCIE
SCOPUS
- Journal Title
- ELECTRONICS
- Volume
- 9
- Number
- 9
- Start Page
- 1
- End Page
- 21
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/6218
- DOI
- 10.3390/electronics9091463
- ISSN
- 2079-9292
2079-9292
- Abstract
- This work presents a predictive control strategy for a four degrees of freedom (DOF) half-car model in the presence of active aerodynamic surfaces. The proposed control strategy consists of two parts: the feedback control deals with the tracking error while the feedforward control handles the anticipated road disturbance and ensures the desired maneuvering. The desired roll and pitch angles are obtained by using disturbance, vehicle speed and radius of curvature. The proposed approach helps the vehicle to achieve better ride comfort by suppressing the amplitude of vibrations occurring in the vertical motion of the vehicle body, and enhances the road-holding capability by overcoming the amplitude of vibrations in tyre deflection. The control strategy also cancels out the hypothetical forces acting on the vehicle body to help the vehicle to track the desired attitude motion without compromising the ride comfort and road-holding capability. The simulations results show that the proposed control strategy successfully reduces the root mean square error (RMSE) values of sprung mass acceleration as well as tyre deflection.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공학계열 > 기계항공우주공학부 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.