Identifying Optimal Cutting Parameters in Drilling of Titanium Aluminum Vanadium Using Finite Element Analysis
- Authors
- M. M. Reddy; S. R. Kostka; 수바레디
- Issue Date
- Jul-2020
- Publisher
- Scientific Research Publishing
- Keywords
- Titanium Alloys; Design of Experiments; Drilling; Cutting Force
- Citation
- Journal of Surface Engineered Materials and Advanced Technology
- Indexed
- FOREIGN
- Journal Title
- Journal of Surface Engineered Materials and Advanced Technology
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/5947
- DOI
- 10.4236/jsemat.2020.103004
- ISSN
- 2161-4881
2161-489X
- Abstract
- Titanium alloys are widely used in the aerospace industries because of their excellent strength-to-weight ratio, high resistance to corrosion, high chemical reactivity and low thermal conductivity and ability to withstand high temperatures. However, these properties make titanium alloys difficult to machine. Drilling of titanium alloy may generate high temperature and high cutting forces. This paper is aimed at determining the suitable cutting parameters in the drilling of titanium alloys to minimize the cutting temperature and cutting forces. A finite element 3D model of the drilling process is simulated in this research. A combination of drilling speeds and feed rates are simulated to obtain the resulting responses of cutting force and temperature. The central composite design (CCD) is used to generate different combinations of cutting parameters to reduce the number of experiments and optimize the temperature and cutting force responses. Results show at the drilling speed of 5000 rpm with a feed rate of 0.1 mm/rev, temperature and cutting force significantly reduced.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.